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Line Graph

The line graph of an undirected graph G is another graph L(G ) that
represents the adjacencies between edges of G .
The vertex set of the line graph of a graph G—denoted L(G )—is the
edge set E (G ) of G , and two vertices e, f are adjacent in L(G ) if and
only if the edges e and f share a vertex in G .
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Iterated Line Graph

For an integer r ≥ 0 the r - th iterated line graph Lr (G ) of a graph G
is defined by:

L0(G ) = G and
Lr (G ) = L(L(r−1)(G )) for r > 0,

where L(G ) denotes the line graph of G .
If G is a connected graph which is not a path then Lr (G ) is nonempty
for all r ≥ 0 [CJIS90].
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Hamiltonian Index

The Hamiltonian Index h(G ) of G is the smallest r such that Lr (G )
has a Hamiltonian cycle [Cha68a].
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Computing Hamiltonian Index Contd....

Checking if h(G ) = 0 holds ≡ checking if graph G is Hamiltonian
1 long known to be NP-complete.
2 even when the input graph is planar and subcubic[GJT76].

Checking if h(G ) = 1 holds ≡ checking if
1 G is not Hamiltonian, and
2 the line graph L(G ) is Hamiltonian.
3 problem is NP-complete [Ber81] even for subcubic graphs [RWX11].
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Computing Hamiltonian Index Contd....

Checking if the line graph L(G ) of a graph G is Hamiltonian are
equivalent to the following :

1 G has an edge Hamiltonian cycle [Cha68a]
2 G contains a closed trail T such that every edge in G has at least one

end-point in T [HNW65]

An edge Hamiltonian path of a graph G is any permutation Π of the
edge set E (G ) of G such that every pair of consecutive edges in Π
has a vertex in common.

An edge Hamiltonian cycle of G is an edge Hamiltonian path of G in
which the first and last edges also have a vertex in common.
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Hamiltonian Index Contd....

If the minimum degree of a graph G is at least three then h(G ) ≤ 2
holds[CW73].

Checking whether h(G ) = t is NP-complete — for any fixed integer
t ≥ 0, even when the input graph G is subcubic.

Goal - Parameterized complexity analysis of the problem of computing
the Hamiltonian Index.
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Parameterized Complexity

One of the ways to deal with NP-hard problems.

An instance of a parameterized problem is a pair (x , k) where x is an
instance of a classical problem and k is a (usually numerical)
parameter which captures some aspect of x .

FPT: A problem is fixed parameter tractable (FPT ) with respect to
parameter k if there exists an algorithm running in f (k).nO(1) time -
this running time is abbreviated as O?(f (k)).
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Problem Definition

Hamiltonian Index(HI) Parameter: tw
Input: A connected undirected graph G = (V ,E ) which is not a path, a
tree decomposition T = (T , {Xt}t∈V (T )) of G of width tw , and r ∈ N.
Question: Is h(G ) ≤ r?

Our Result - The Hamiltonian Index problem is fixed-parameter
tractable – there is an algorithm which solves an instance
(G , T , tw , r) of Hamiltonian Index in O?((1 + 2(ω+3))tw ) time, where
ω denotes the matrix multiplication exponent (ω < 2.3727).
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Related Work

The parameterized complexity of computing h(G ) — has not been
previously explored.

Two special cases of checking if h(G ) ∈ {0, 1} — have been studied
with the treewidth tw of the input graph G as the parameter

1 Checking whether h(G ) = 0 holds — i.e., whether G is Hamiltonian

was long known to be solvable in O?(twO(tw)) time.
In 2011—-showed that this can be done in randomized O?(4tw ) time
[CNP+11].
Bodlaender et al.[BCKN15] and Fomin et al. [FLPS16]- showed that
this can be done in deterministic O?(2O(tw)) time.
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Related Work

Checking whether h(G ) = 1 holds — i.e. whether L(G) is hamiltonian

- first addressed indirectly by Lampis et al[LMMU17].

addressed Edge Hamiltonian Cycle(EHC) and Edge Hamiltonian
Path(EHP) problems.
showed that EHP is FPT if and only if EHC is FPT, and that these
problems can be solved in O?(twO(tw)) time.

- Misra et al. investigated an optimization variant of Edge Hamiltonian
Path - called Longest Edge-Linked Path (LELP).

An edge-linked path is a sequence of edges in which every consecutive
pair has a vertex in common.
Given a graph G , k ∈ N, and a tree decomposition T of G of width tw
as input the LELP problem asks whether G has an edge-linked path of
length at least k.
Setting k = |E(G)| yields EHP as a special case.
solved LELP (and hence, EHPand EHC) in O?((1 + 2(ω+3))tw ) time.
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Tree decomposition and Treewidth

A tree decomposition of a graph G is a pair T = (T , {Xt}t∈V (T ))
where T is a tree and every vertex t of T is assigned a subset
Xt ⊆ V (G ) of the vertex set of G .

Each Xt - called a bag,

Example

A graph G
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Tree decomposition and Treewidth

The structure satisfies the following conditions:
1 Every vertex of G is in at least one bag.
2 For every edge uv in G there is at least one node t ∈ V (T ) such that
{u, v} ⊆ Xt .

3 For each vertex v in G the set {t ∈ V (T ) ; v ∈ Xt} of all nodes whose
bags contain v , form a connected subgraph (i.e, a sub-tree) of T .

The width of tree decomposition - maximum size of a bag, minus one.

The treewidth of a graph G , denoted tw(G ), - minimum width of a
tree decomposition of G .
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Nice Tree Decomposition

A nice tree decomposition of a graph G is a tree decomposition
T = (T , {Xt}t∈V (T )) with the following additional structure:

1 The tree T is rooted at a distinguished root node r ∈ V (T ).
2 The bags associated with the root node r and with every leaf node are

all empty.

Example

A graph G

A nice tree decom-

position of G
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Nice Tree Decomposition Contd...

Every non-leaf node is one of four types:
1 Introduce vertex node: — a node t ∈ V (T ) with exactly one child

node t ′ such that (Xt \ Xt′) = {v} for some vertex v ∈ V (G )–i.e., the
vertex v is introduced at node t.

2 Introduce edge node: — a node t ∈ V (T ) with exactly one child node
t ′ such that Xt = Xt′ . Further, the node t is labelled with an edge
uv ∈ E (G ) such that {u, v} ⊆ Xt ; the edge uv is introduced at node t.
Every edge in the graph G is introduced at exactly one introduce edge
node in the entire tree decomposition.

3 Forget node: — a node t ∈ V (T ) with exactly one child node t ′ such
that (Xt′ \ Xt) = {v} for some vertex v ∈ V (G ); the vertex v is
forgotten at node t.

4 Join node: — a node t ∈ V (T ) with exactly two child nodes t1, t2

such that Xt = Xt1 = Xt2 .
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Nice Tree Decomposition Contd.....

For a node t ∈ V (T ) of the nice tree decomposition T , let
1 Tt — the subtree of T which is rooted at t.
2 Vt — the union of all the bags associated with nodes in Tt .
3 Et — the set of all edges introduced in Tt , and
4 Gt = (Vt ,Et) – the subgraph of G defined by Tt .
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Eulerian Steiner Subgraph

A key part of our algorithm for computing h(G ) consists of solving
Eulerian Steiner Subgraph:

Eulerian Steiner Subgraph(ESS) Parameter: tw
Input: An undirected graph G = (V ,E ), a set of “terminal” vertices
K ⊆ V , and a tree decomposition T = (T , {Xt}t∈V (T )) of G , of width
tw .
Question: Does there exist an Eulerian subgraph G ′ = (V ′,E ′) of G
such that K ⊆ V ′?

Eulerian Steiner Subgraph problem is NP-complete[Pul79].
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An FPT algorithm for Eulerian Steiner Subgraph

Input: an instance (G ,K , T , tw) of Eulerian Steiner Subgraph

Our algorithm tells in O?((1 + 2(ω+3))tw ) time whether graph G has
a subgraph which is

1 Eulerian, and
2 contains every vertex in the terminal set K .

Obtain a nice tree decomposition from T in polynomial time [Klo94].

Perform dynamic programming (DP) over the bags of this nice tree
decomposition.

Pick an arbitrary terminal v? ∈ K and add it to every bag of T .

Let T refer to the resulting “nearly-nice” tree decomposition in which
the bags at all the leaves and the root are equal to {v?}.
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An FPT algorithm for Eulerian Steiner Subgraph

How an Eulerian subgraph G ′ = (V ′,E ′) of G which contains all the
terminals K interacts with the structures defined by node t in the
following way

For a bag Xt and subsets X ⊆ Xt , O ⊆ X , we say that a partition
P = {X 1,X 2, . . .X p} of X is valid for the combination (t,X ,O) if
there exists a subgraph G ′

t = (V ′
t ,E

′
t) of Gt such that

1 Xt ∩ V (G ′t ) = X .
2 G ′t has exactly p connected components C1,C2, . . . ,Cp and for each

i ∈ {1, 2, . . . , p}, X i ⊆ V (Ci ).
3 Every terminal vertex from K ∩ Vt is in V (G ′t ).
4 The set of odd-degree vertices in G ′t is exactly the set O.

Such a subgraph G ′
t of Gt - is a witness for ((t,X ,O),P).
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An FPT algorithm for Eulerian Steiner Subgraph

For each node t of the tree decomposition T compute the set of all
partitions P which are valid for the combination (t,X ,O).

At the root node r the algorithm would apply validity condition to
decide the instance (G ,K , T , tw).

The running time of this algorithm could have a factor of tw tw .

To avoid this after computing a set Aof valid partitions for each
combination (t,X ,O) we compute a representative subset B ⊆ A and
throw away the remaining partitions A \ B.

Thus the number of partitions which we need to remember for any
combination (t,X ,O) never exceeds 2tw .

The entire DP can be done in O?((1 + 2(ω+3))tw ) time.
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Finding the Hamiltonian Index

Input: An instance (G , T , tw , r) of Hamiltonian Index.

Output: In O?((1 + 2(ω+3))tw ) time outputs whether graph G has
Hamiltonian Index at most r .

If G is a connected graph on n vertices which is not a path, then
Lr (G ) is Hamiltonian for all integers r ≥ (n − 3) [Cha68a].

If r ≥ (|V (G )| − 3) holds then our algorithm returns yes.

If r < (|V (G )| − 3) then it checks, for each i = 0, 1, . . . , r in
increasing order, whether h(G ) = i holds.
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Finding the Hamiltonian Index

How we check if h(G ) = i holds for increasing values of i .
1 For i = 0 we apply an algorithm of Bodlaender et al[BCKN15].
2 For i = 1 we apply a classical result of Harary and

Nash-Williams[HNW65].
3 For checking if h(G ) ∈ {2, 3} holds we make use of a structural result

of Hong et al. [HLTC09].

Let G be a connected graph with h(G) ≥ 2 and with at least one
vertex of degree at least three, and let H̃(2), H̃(3) be graphs constructed
from G using [HLTC09]. Then
h(G) = 2 if and only if H̃(2) has a spanning Eulerian subgraph; and
h(G) = 3 if and only if h(G) 6= 2 and H̃(3) has a spanning Eulerian
subgraph.

4 For checking if h(G ) = i holds for i ∈ {4, 5, . . . } we use a reduction
due to Xiong and Liu [XL02].

If G is a connected graph with h(G) ≥ 4, then using [XL02], we
construct a graph h′(G) such that h(G) = h′(G) + 1.
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Finding the Hamiltonian Index

Checking Hamiltonicity takes O?((5 + 2(ω+2)/2)tw ) time.

Checking if L(G ) is Hamiltonian takes O?((1 + 2(ω+3))tw ) time.

The graphs H̃(2) and H̃(3) can each be constructed in polynomial time,
and checking if each has a spanning Eulerian subgraph takes
O?((1 + 2(ω+3))tw ) time.

The running time of the algorithm satisfies the recurrence
T (r) = O?((1 + 2(ω+3))tw ) + T (r − 1).

The recurrence resolves to T (r) = O?((1 + 2(ω+3))tw ).
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Conclusion

The Hamiltonian Index h(G ) - introduced by Chartrand in 1968.

Checking if h(G ) = t holds is NP-hardfor any fixed integer t ≥ 0.

the problem is FPTand - O?((1 + 2(ω+3))tw(G)) time.

This running time matches that of the current fastest algorithm, due to
Misra et al. [MPS19], for checking if h(G ) = 1 holds.

Eulerian Steiner Subgraphproblem - O?((1 + 2(ω+3))tw(G)) time.

Our result on Eulerian Steiner Subgraph could turn out to be useful for
solving other problems as well.

Whether there exists a matching lower bound, or can this be improved?

Can h(G ) be found in the same FPT running time as it takes to check if
G is Hamiltonian?
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