
ar
X

iv
:1

30
3.

18
80

v2
 [

cs
.P

L
]

 1
6

Se
p

20
14

A Simple Algorithm for Global Value

Numbering

Nabizath Saleena and Vineeth Paleri

Department of Computer Science and Engineering

National Institute of Technology Calicut, India.

{saleena,vpaleri}@nitc.ac.in

Abstract

Global Value Numbering(GVN) is a method for detecting redundant
computations in programs. Here, we introduce the problem of Global
Value Numbering in its original form, as conceived by Kildall(1973), and
present an algorithm which is a simpler variant of Kildall’s. The algorithm
uses the concept of value expression - an abstraction of a set of expres-
sions - enabling a representation of the equivalence information which is
compact and simple to manipulate.

1 Introduction

Detection and elimination of redundant computations have been interesting top-
ics in the area of code optimization in compilers. Value Numbering originated
as a method for detecting redundant computations within a basic block (known
as Local Value Numbering). The basic idea is to assign a number to each ex-
pression in such a way that equivalent expressions are assigned the same number
[2]. Two expressions are said to be equivalent if we can statically determine that
both the expressions will have the same value during execution.

The problem of Global Value Numbering(GVN) is how to extend the idea
of local value numbering to detect redundant computations globally, within
a program. An initial attempt on GVN can be found in Kildall [4]. In the
structuring approach of Kildall [4], for every expression in the program, Kildall
computes and maintains all its equivalent expressions, leading to exponential
sized partitions. Most of the works that followed, tried to make the process
more efficient by means of special program representations and data structures
[1, 3, 5, 6]. In general, we feel that there is a lack of clarity in the underlying
concept of GVN and a lack of simplicity in the solutions.

In fact, in his implementation notes, Kildall suggested a value numbering

approach to ensure linear sized partitions [4]. An expression with value numbers
as operands, called value expression, is used to represent a set of expressions

1

http://arxiv.org/abs/1303.1880v2

that are equivalent. At program points where multiple control flow paths merge,
the equivalence information is computed by means of a confluence operator.
Confluence of equivalence classes involving value expressions is a little bit tricky,
and may be due to this reason the method did not draw much attention. Here,
we make use of the concept of value expression to devise a simple algorithm for
GVN.

We start with notations and definitions in Section 2. The algorithm for global
value numbering is given in Section 3. This is followed by some comments on
the algorithm in Section 4 and conclusions in Section 5.

2 Notations and Definitions

2.1 Program Representation

The input to the algorithm is assumed to be a flow graph, with an empty entry
node, denoted entry, and an exit node, denoted exit. Each node contains at most
one assignment statement in three-address code1. Each assignment statement
is of the form x = e, where x is a variable and e is an expression. An expression

is either a constant, a variable, or an expression of the form y op z where y and
z are variables or constants and op is an operator. For a node n in the flow
graph, the input and output points of the node are denoted by INn and OUTn

respectively.

2.2 Expression-pool

For a program point, the expression-pool at that point denotes the set of ex-
pressions that are equivalent at that point. This is represented as a partition of
expressions into equivalence classes. Each class in the pool has a value number,
denoted vi, where i is a positive integer. For convenience, we show the value

number of a class as the first element in it. As an example, {[v1, a, x], [v2, b, y]}
shows an expression-pool with two equivalence classes. The value number v1 is
assigned to a and x and value number v2 is assigned to b and y. For a node n

in the flow graph, we use EINn and EOUTn to denote the expression-pools at
INn and OUTn respectively.

2.3 Value Expression

For each expression of the form x op y, we can obtain a value expression, by
replacing the operands of the original expression by the corresponding value

numbers. For example, suppose the expression-pool {[v1, a, x], [v2, b, y]}
reaches a node containing the statement z = x + y. Here, the value expression

of x + y is v1 + v2. Instead of the program expression x + y, we put its value

expression in the pool, with a new value number say v3, to obtain the output
pool, {[v1, a, x], [v2, b, y], [v3, v1 + v2, z]}.

1For simplicity, we do not consider other statements.

2

We can see that the value expression v1+v2, represents not just x+y, but the
set of equivalent expressions {a+b, x+b, a+y, x+y}. The presence of v1+v2 in
the pool indicates that an expression from this set is already computed, and this
information is enough for detection of redundant computations. The interesting
point to note is that a single binary value expression can represent equivalence
among any number of expressions of any length. As an example, with respect
to the above pool, the value expression v1 + v3 represents the expressions a+ z,
x+ z, a+ (a+ b), a+ (x+ b), x+ (a+ b), and so on.

3 Value Numbering: Algorithm

The algorithm computes the expression-pool at every program point. For a
node n in the flow graph, if EINn is given, then we can compute EOUTn by
means of the transfer function associated with node n. The points at which
multiple control flow paths join are called confluence points. For computing the
expression-pools at such points, we define a confluence operator.

3.1 Transfer Function

The transfer function associated with a node n, denoted fn, computes EOUTn

using EINn, i.e. EOUTn = fn(EINn). Algorithm 1 shows the transfer function
for a node n containing an assignment x = e, where x is a program variable and
e is an expression2. The assignment can be considered as killing all expressions
involving the variable x and generating the new equivalence between x and e.
The effect of killing expressions is achieved by removing x from its class, say Ci.
Now, if Ci is a singleton with its value number, say vi, as the only element in
it, we delete the class Ci and any value expressions involving vi from the pool.
The function deleteSingletons(E) is assumed to do these steps repeatedly till
no singleton classes remain in the pool E.

The function valueExp(e) returns the value expression of e, if e is of the form
x op y, and returns e itself otherwise. If e is already assigned a value number in
EINn, say ve, then we put x in the same class as that of e. Otherwise, a new
class containing x and e is created together with a distinct value number in it
and this new class is added to the output pool (if e contains an operator, then
instead of e, we add its value expression).

3.2 Confluence Operator

The expression-pool at a confluence point should contain the sets of equivalent
expressions common to all incoming pools. The common expressions that are
explicitly present in the input pools can be obtained by a simple class-wise
intersection of expression-pools. The hard part is obtaining the equivalence in-
formation based on the value expressions in the incoming pools. In the example

2if x occurs in e, we assume that the statement is split into t = e followed by x = t where

t is a new distinct temporary variable.

3

Algorithm 1: Computes EOUTn = fn(EINn), for a node n containing
the assignment x = e.

Et = EINn;
if (x is in a class Cx ∈ Et)

then remove x from Cx;
deleteSingletons(Et);

e′ = valueExp(e);
if (e′ is in a class Ce′ ∈ Et)

then add x to Ce′ ;
else create a new class Ck, with x and e′ together with a new

value number vk in it, and add Ck to Et;
EOUTn = Et;
return EOUTn;

E1 : {[v1, x, a], [v2, y, b], [v3, v1 + v2, z]} E2 : {[v4, x, c], [v5, y, d], [v6, v4 + v5, s]}

E3 : {[v7, x}, [v8, y], [v9, v7 + v8]}

Figure 1: Computing confluence

shown in Figure 1, we see two expression-pools, E1 and E2, reaching a conflu-
ence point. Let E3 be the pool resulting after confluence. Since x occurs in
both the input pools E1 and E2, we put it in the output pool E3. Since the
value numbers of x are different in the input pools, we assign a new distinct
value number v7 for the resulting class. Similarly, we put y in E3 with new value
number v8. In E1, the value expression v1 + v2 represents the set of equivalent
expressions x+ y, x+ b, a+ y, and a+ b. In E2, the value expression v4 + v5
represents the set of equivalent expressions x+ y, x+ d, c+ y, and c+ d. Here,
we see a common expression x+y represented by v1+v2 in E1 and v4+v5 in E2.
Let us now devise a method to collect such common expressions by examining
the value expressions in the input pools.

Consider the corresponding operands of the pair of value expressions v1+ v2
and v4+v5. We see a common element x in the classes of v1 and v4 and a common
element y in the classes of v2 and v5. In other words, the intersection of the
classes of v1 and v4 is non empty and also the intersection of the classes of v2
and v5 is non empty. This is enough to infer that there is a common expression
represented by the two value expressions. At confluence, the intersection of the
classes of v1 and v4 results in a class with value number v7 and the intersection
of the classes of v2 and v5 results in a class with value number v8. Hence the
common expression x + y, after confluence, gets the value expression v7 + v8

4

and this can be added to E3.
In general, let there be a class with value number vi and value expression

vi1+vi2 in E1, and let there be a class with value number vj and value expression

vj1 + vj2 in E2. If the intersection of the classes of vi1 and vj1 results in a non
empty class with value number vk1, and the intersection of the classes of vi2 and
vj2 results in a non empty class with value number vk2, then we can conclude
that the pair of value expressions, vi1 + vi2 and vj1 + vj2, represent a common
expression e in the two pools. The value expression of e after confluence is
vk1 + vk2 and this can be added to E3.

An algorithm for computing the confluence of two expression-pools Ei and
Ej is given in Algorithm 2. We use the symbol

∧
to denote the confluence

operation. The algorithm takes each pair of classes, Ci ∈ Ei and Cj ∈ Ej ,
and finds the common expressions in Ci and Cj (either explicitly present or
implicitly represented by value expressions). The operation of finding the

Algorithm 2: Computing confluence of expression-pools, Ei and Ej , i.e.
Ei

∧
Ej .

Ek = Φ ;
foreach pair of classes, Ci ∈ Ei and Cj ∈ Ej

Ck = Ci ⊓ Cj ;
if (Ck 6= Φ)

then add Ck to Ek;
deleteSingletons(Ek);
return Ek;

common expressions in Ci and Cj can be considered as a special intersection
and we denote it as Ci ⊓ Cj . Algorithm 3 shows the computation of Ci ⊓ Cj .

Algorithm 3: Computing Ci ⊓ Cj .
Note: A class with value number vn is denoted by Cn and vice-versa.

Ck = Φ;
foreach e ∈ Ci ∩ Cj

add e to Ck;
if (Ci and Cj have different value expressions)

then

// let vi1 + vi2 and vj1 + vj2 be the value expressions

// in Ci and Cj respectively

Ck1 = Ci1 ⊓ Cj1;
Ck2 = Ci2 ⊓ Cj2;
if (Ck1 6= Φ and Ck2 6= Φ)

then add the value expression vk1 + vk2 to Ck;
if (Ck 6= Φ and Ck does not have a value number)

then add a new value number, say vk, to Ck;
return Ck;

5

3.3 The Algorithm

Algorithm 4 shows the main function for Global Value Numbering. T is the
top element such that Ei

∧
T = Ei, for any expression-pool Ei. For a node n,

Algorithm 4: Computes EINn and EOUTn for each node n.

EOUTentry = Φ;
foreach node n 6= entry do EOUTn = T ;
while (changes to any EOUT occur) do

// We mean changes in the equivalence information.

// The changes only in value numbers can be ignored.

foreach node n 6= entry do

EINn =
∧

p∈pred(n)

EOUTp;

EOUTn = fn(EINn);

pred(n) denotes the set of immediate predecessors of n, and
∧

p∈pred(n)

computes

the confluence of expression-pools that reach the output of its predecessors.

4 Comments on the Algorithm

Power of the Algorithm Figure 2 shows an example of redundancy detec-
tion which will demonstrate the power of the algorithm, especially that of the
confluence operation. Let us use Ci to denote a class with value number vi. The

c = a+ b

e = c+ z

E1 : {[v1, x, a], [v2, y, b], [v3, v1+v2, c],
[v4, z], [v5, v3 + v4, e]}

d = p+ q

f = d+ z

E2 : {[v6, p, x], [v7, q, y], [v4, z],
[v8, v6 + v7, d], [v9, v8 + v4, f]}

E3 : {[v10, x}, [v11, y], [v4, z], [v12, v10 + v11], [v13, v12 + v4]}

g = x+ y

h = g + z

Figure 2: Value Numbering to detect redundancy

value expression v1+ v2 in C3 and v6+ v7 in C8 represent a common expression
x+y. When we compute the confluence, C3⊓C8 results in the class C12 and the
value expression v10 + v11 in it represents x+ y. Another common expression is
(x+ y) + z, represented by the value expressions in C5 and C9. The operation
C5 ⊓C9, results in C13, whose value expression v12 + v4 represents (x+ y) + z.
After confluence, when we do value numbering of g = x+ y, since x+ y maps to

6

v10 + v11, a value expression in E3, it is detected as redundant and g gets value
number v12. Similarly, the expression g + z maps to v12 + v4 and hence this is
also detected as redundant.

A Comparison With Some of the GVN Algorithms In terms of power,
our algorithm is as precise as Kildall’s approach[4]. Alpern, Wegman, and
Zadeck’s (AWZ) algorithm [1] is an efficient algorithm for GVN, but is not
as precise as Kildall’s. The AWZ algorithm fails to detect the category of equiv-
alences shown in Figure 2. The algorithm given by Gulwani and Necula [3] does
intersection of only those classes having at least one common variable. But as
per our observation, intersection of all pairs of classes is required for detecting
the kind of equivalences similar to that shown in Figure 2.

5 Conclusion

An algorithm for Global Value Numbering is presented. The concept of value
expression enables a compact representation of equivalence and simplifies the
computation of confluence. It may be noted that a single binary value expression

can represent equivalence among any number of expressions of any length. We
feel the algorithm is simpler compared to that available in the literature. In
terms of power, it is as precise as Kildall’s approach.

References

[1] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of vari-
ables in programs. In 15th ACM Symposium on Principles of Programming

Languages, pages 1–11, 1988.

[2] A. W. Appel. Modern Compiler Implementation in Java. Cambridge Uni-
versity Press, 2000.

[3] S. Gulwani and G.C. Necula. A polynomial time algorithm for global value
numbering. Science of Computer Programming, 64(1):97–114, 2007.

[4] G.A. Kildall. A unified approach to global program optimization. In 1st

ACM Symposium on Principles of Programming Languages, pages 194–206,
1973.

[5] B.K. Rosen, M.N. Wegman, and F.K. Zadeck. Global value numbers and
redundant computations. In 15th ACM SIGACT-SIGPLAN Symposium on

Principles of Programming Languages, pages 12–27, 1988.

[6] O. Ruthing, J. Knoop, and B. Steffen. Detecting equality of variables: Com-
bining efficiency with precision. In 6th International Symposium on Static

Analysis, pages 232–247, 1999.

7

	1 Introduction
	2 Notations and Definitions
	2.1 Program Representation
	2.2 Expression-pool
	2.3 Value Expression

	3 Value Numbering: Algorithm
	3.1 Transfer Function
	3.2 Confluence Operator
	3.3 The Algorithm

	4 Comments on the Algorithm
	5 Conclusion

