

EFFECTIVE PERFORMANCE ANALYSIS AND VISUALIZATION ON
EMBEDDED LINUX

Jayaraj P.B, Ranjith Gopalakrishnan1, Vikas Jain2
Philips Innovation Campus

No. 1, Murphy Road, Ulsoor

Bangalore 560 008
INDIA

Ranjith.Gopalakrishnan@Philips.com, Vikas.Jain@Philips.com

ABSTRACT

This paper1,2 presents a case study of dynamic
performance analysis and bottleneck identification of a
large application software stack on a Linux-based
embedded platform. We use some standard techniques for
performance analysis, but we also try out some techniques
that are not so common for performance characterization
and visualization. The methodology used for
measurement collection is generic and hardware-
independent (software-centric), and it is relevant for any
effort that develops embedded applications on a Linux
platform. Using this methodology, we have analyzed the
performance of the JUICE (Joint User Interface and
Control Engine) software stack developed within Philips,
running on a Linux-based embedded platform. We have
identified relevant metrics, detailed the tools and methods
by which they can be collected (given the existing open-
source tool chain) and discussed the salient aspects of
performance analysis and visualization of the collected
measurements. We conclude that the open-source tool
chain provides good support for such measurement
collection and can aid further performance analysis
efforts. We also discuss the various gaps and issues in the
existing tooling that we have come across in this effort.

KEY WORDS
Software Performance Engineering, Software
Optimization, Software Performance Analysis, Linux,
Embedded Systems

1. Introduction

More and more embedded systems and CE (consumer
electronics) devices are being labeled as software-
intensive, with the amount of software in these systems
reaching several megabytes [1][2]. In [1], the fact that the
amount of software in CE devices is growing at an

1,2 This work was carried out at Philips Research India,
Bangalore. Ranjith Gopalakrishnan is affiliated to NXP
Semiconductors (formerly Philips Semiconductors),
Bangalore. Vikas Jain is affiliated to Philips Consumer
Electronics, Bangalore.

exponential rate (quite similar to moore’s law) is well
brought out. It is further explained that the amount and
complexity of functionality implemented in software is
increasing by leaps and bounds (current high-end TVs
hold about 10MB of software). This makes the realization
of systems that are responsive to user inputs a
considerable challenge. The fact that early performance
analysis is critical in general software development was
realized in the early 90’s [3]. Nowadays, the scenario in
the CE world is no different; the role of timely
performance analysis of systems and software is crucial
for the realization of responsive and robust CE devices.

Linux is readily establishing itself as one of the most
important and versatile operating systems to enter the
embedded computing domain. There are several examples
of the usage of Linux platforms to realize products in the
CE software development community, but much of these
efforts don’t yet address the problem of performance
analysis in a systematic manner. On the other hand, hard
real-time system development has performance
management as a significant component [4]. Additionally,
performance analysis for embedded systems in the CE
(consumer electronics) has been concentrated on the
hardware aspects of the platform. Hence, studies were
done on low-level aspects of the system like the memory
cache, bus bandwidth, bus utilization, etc. In such
systems, the application software was simple, and most of
the performance problems were caused in the layers
below it. But with the growing complexity of software,
performance bottlenecks caused by software is gaining
prominence. Another traditional way of doing
performance analysis involved the manual
instrumentation of the code (to gather timing values, etc)
and the tabulation and analysis of collected values. This is
both time-consuming and error-prone, and hence, one
should explore ways in which any code instrumentation
can be done (as much as possible) in an automatic
fashion.

In this work, we examine aspects of performance analysis
of application software stacks running on Linux, and how
performance bottlenecks in these can be found out – early
and effectively. Also, the objective was to get insights

514-077 186

bryson

into issues in performance analysis of applications on
Linux-based embedded platforms. This effort would also
help identify relevant tools and methods by which such
analysis can be done, and also gaps in this tooling
available.

Performance characterization is a description of the
qualities and peculiarities of a system related to its
performance, mainly its behavior and response under
certain conditions. Performance characterization must be
as quantitative as possible, so that the system can be
compared with other similar systems. Performance
analysis is the study of the measurements collected from a
characterization exercise, by which performance issues
(like bottlenecks) can be identified [5]. The main
contribution of this work is the exploration of the ease by
which systematic performance analysis can be done on
large application software stacks on embedded Linux
platforms. The end-objective is to develop a quick and
effective methodology for the identification of bottlenecks
and for getting better insights into the dynamic execution
aspects of large software stacks. Also, we present several
metrics for performance characterization, including a
metric by which we characterize the real-time nature of
components of software stacks. Contributions are also
made in the area of performance visualization by
enhancement of the available tool chain in this respect.

The rest of this paper is organized as follows. We shall
look at other work that is relevant to this study in section
2. In section 3, details are given about the JUICE software
stack, on which the performance analysis studies are
done. Section 4 outlines the several metrics that were
identified for the characterization of application stacks.
We shall elucidate on the tools and methods used for the
collection of the measurements, in section 5. Some of the
performance analysis and visualization results will be
presented in section 6. Concluding remarks will be made
in section 7.

2. Previous Work

 There are some papers that describe an analytical
approach to the problem of performance management, in
which mathematical models are described wherein the
performance of the system can be predicted. In general,
the performance of a system can be predicted by symbolic
or numerical analysis, or simulation. Among these,
analytical solutions are considered to be more faster, and
it should be there for be more suitable for a quick
evaluation [6]. An architectural approach to performance
analysis is also used [7][8]. A similar approach for
software architecture evaluation strategy of non-safety
critical embedded software is described in [4]. An
experimental case study of performance optimization of
an embedded multimedia home platform architecture is
discussed here. This strategy uses concepts of queuing
networks, and is only suitable for advanced evaluation of

systems. Such strategies also need practitioners with a
good knowledge of queuing network theory, for its
implementation.

In [9], a study is described to gather objective data on
(Linux-based) application performance on embedded
hardware. Various metrics of interest are defined and
measured, as per the functionality of embedded device of
interest. But this study only measures task-level details
like the context-switch time and the process memory
usage, and does not provide a source-code level analysis.

There are some commercial tools available for
instrumentation-based profiling of application code.
Rational Quantifier for Linux [10] is a performance
profiler that identifies the portions of an application that
slow down the execution speed. It offers the performance
data in graphical and textual format. Test Quest Pro is
another automated test solution for embedded systems
with sophisticated human interfaces. The vendors claim
that they specialize in automated test solutions for many
application and devices in the embedded computing
industry. But the disadvantages of such commercial tools
are that they are costly, and they are “closed” (their
internals cannot be changed as per the user’s needs).

Our paper discusses the dynamic performance evaluation
and optimization of embedded software stacks using tools
from the open-source community. Tools and techniques
that are needed for supporting the dynamic performance
measurement, evaluation and optimization, are discussed.

3. Software for case study: the JUICE

Software Stack

Figure 1: The main components of the JUICE
software stack

Frame
Buffer

CJuice
Kernel

Juice

CJuiceBasic
Widgets

CJuiceTarge
tPlatform

Graphics h/w access

Application

JAPI

187

CJuice Kernel

Juice

CJuice Target Platform
CJuice Basic

Widgets

We used the JUICE (Joint User Interface and Control
Engine) software stack, developed internally in Philips,
for our study. JUICE is a UIMS (user interface
management system) that has been designed to ease the
UI (user interface) and application development for
embedded systems. It implements complex UI
functionalities like text scrolling, multi-layered menus,
etc. Figure 1 shows a simplified architectural view of the
JUICE software stack. Notice how the JUICE “talks” (via
JAPI) to various applications, which, in turn talk to the
middleware subsystem. In other words, JUICE is the
agent by which the actual application (CD reader, CD
writer, mobile phone middleware, etc) “talks” to the user.
Good responsiveness by this stack is essential in
providing a good end-user experience. This is a prime
motivation for our selection of JUICE for this
performance analysis exercise. JUICE contains around
75K lines of codes in the C language, distributed in
around 500 C-style functions (250 files).

4. Performance Metrics Identified

Now, we shall discuss the several metrics that we
ultimately used for the study. These metrics were
converged upon after consultation with the software
architects of JUICE. They are:

1. Elapsed time in function call
2. Fan-in and fan-out of the function
3. Elapsed time jitter

The total elapsed time in a function call is the amount of
time elapsed between entering the function and exiting
from it. This metric is also termed the latency of the
function call. This is a sum of time needed to execute
lines of source code that are local to the function (termed
local elapsed time) and the time to execute other functions
called by that particular function. A characterization of
the latencies encountered in the stack is very important, as
this is a good indication of the responsiveness of the
software.

 f 1 f 2 f 3

 2 4 3

 f 4

 3 2

 f 5 f 6

Figure 2: Explanation of the fan-in, fan-out metrics
used for performance characterization

The fan-in of a function is the number of function calls
made by other functions to that function, during the
execution of the software. On the same note, fan-out of a
function refers to the number of function calls that the
function makes to other functions (excluding those in the
system library, like the read() call provided by libc). In
figure 2, functions f1, f2 and f3 call function f4 two, four
and three times respectively. Hence, the fan-in of function
f4 is 2+4+3 = 9. Likewise, if f4 calls f5 and f6 three and
two times separately, the fan-out of f4 is 3+2 = 5.

The elapsed time jitter of a function call is a measure of
the variability of the elapsed time in a function. This is
calculated by finding the standard deviation of the elapsed
time. This roughly points to the real-time nature of the
function. This is because functions with real-time
execution characteristics are expected to have minimal
variance for their execution time (which is measured by
the elapsed time parameter). Hence, the standard
deviation of elapsed time (which is the elapsed time jitter)
would be minimal. For example, if a function
decode_data() has elapsed times as 100, 104, 96, 105
milliseconds for similar data input, the elapsed time jitter
will be low, which may help us to conclude that the
function is (more or less) real-time in nature. But, if the
elapsed times vary widely as 100, 67, 134, 75
milliseconds for decoding of similar data, the elapsed
time jitter would be high. This would signal the non-real
time nature of this function. Thus, a system that uses this
function will be relatively non real-time in nature. We
think that the judicious usage of this metric can give a
good indication of how deterministic the involved
functions are, which may be very useful in the realization
of soft real-time multimedia systems.

5. Collection Methodology

All the performance numbers that were collected were
with compiler-level instrumentation, and did not involve
any manual instrumentation. This ensures that the
collection of performance numbers is simple, easy and
error-free. We used the extensive instrumentation
facilities provided by the GCC compiler. The compiler
supports the insertion of instrumentation to collect: a) the
call-graph, or a graph representing the sequence of
functional calls made in the software stack, b) the latency
information related to the function execution. Tools like
“gprof” and “function-check” [11] were used to collate
and tabulate the collected numbers. Figure 3 shows the
overall methodology that we followed in the evaluation of
the software. In this figure, the numbered boxes represent
the stages where the architects were involved. The
additional tooling that we developed was for stage 3.

Use-case of JUICE: The definition of a good and
representative use-case is very important while
conducting performance measurements. The use-case has
to be simple (so that it is easily repeatable) and yet, it

188

should exercise all the relevant software modules in such
a way that leads to the manifestation of the maximum
number of bottlenecks. Keeping these criteria in mind,
and in consultation with the architects, we identified a
relevant use-case as scrolling up 30 times through a set of
menus.

Experimental setup used: The target hardware to run the
JUICE stack used was the AMD AU 1200 Board [12].
The target runs Linux kernel 2.6.11-rc4 (modified by
MontaVista) on a MIPS core, and the measurements were
collected on the IDE on-board hard-disk. The cross
compiler used was mipsel–linux gcc-3.3.5-glibc-2.3.2.

Using the methodology described above, we were able to
collect all the metrics listed in the previous section for
every function in the stack.

Gaps identified in open-source tooling:

We shall briefly talk about the gaps or deficiencies we
have identified in the tools currently available, during our
efforts:

• Handling of context switches: Note that the
instrumentation collects only the time of entry and exit of
the function. There is a chance that in the time in-
between, while executing in the body of the function, the
operating system switches to execution of other functions
(or other processes). The times for these executions would
also be added to the latency of the function execution,
which is a significant deficiency if the profiled software is
heavily multithreaded.

In order to compensate for this deficiency as best as
possible, we first make sure that the profiled application is
the only one running on the target and the number of
external hardware interrupts is as minimal as possible.
Also, we run the use-case a number of times, and for each
function, we take the average of all the latency times
recorded.

• Overhead of instrumentation: We measured the
overheads (in terms of extra time taken) due to the
instrumentation introduced by the GCC compiler. It is
about 4.2 microseconds per function call. This overhead is
quite small, thought not insignificant. The assumption is
that functions of interest have much more latencies of
execution above 1-2 milliseconds.

• Remote logging: The amount of RAM memory in
embedded systems is very limited. Hence, a provision by
which one can transfer the collected measurements to a
host machine would be very useful. Such transfers should
not be too frequent, or the overhead of such transfers can
affect the execution of the application.

• Absolute timing information: Currently, there is no
method by which one can log the absolute times of the

entry and exit into functions, and other such events. Such
values would make possible integrated performance
analysis over measurements from various tools.

Figure 3: Major steps of the performance analysis
methodology used

6. Performance Visualization and Analysis

Performance visualization is important so that one can
quickly infer and identify bottlenecks from the huge
amount of performance data collected. Performance
visualization and analysis is essentially mining the large
collection of performance measurements for interesting
aspects of performance (like performance hotspots). We
developed a tool (which works in tandem with the
performance analysis tool cgprof [13]), which generates a
colored call-graph, for performance visualization. This
call graph indicates the various function calls made during
the execution of the software stack. One can indicate to
the tool the parameter on which the coloring of the nodes
(of each function) is to be based – like the total elapsed
time in the function, the fan-in of the function, etc. For
example, let us consider that the fan-in of functions is the
criteria chosen for the coloring of the call-graph. In this
case, functions with a low fan-in will be colored green,
those with a moderate fan-in will be colored yellow,
functions with a high fan-in will be colored orange, and
those with the highest amount of fan-in will be colored

189

red. This tool was very helpful in quickly assessing the
parts of the architecture or code that could have lead to
performance bottlenecks.

A part of the output of this tool when run on JUICE can
be seen in figure 4 (coloring is based on fan-in of
functions). This call-graph points to the fact that function
“SliderCreate” (seen as a red, or darkest, node) is the most
used of all functions, as it services the maximum number
of function calls

 Analysis of collected measurements: In section 4, the
various performance metrics that were used for
characterization of the software stack were outlined. Also,
we have discussed the use-case that was employed to
exercise the stack, during the collection of these
measurements. Now, some sample inferences made from
the collected data would be presented. This would give a
flavor of the performance analysis possible on the
collected data.

Figure 4: Screenshot from the performance

visualization tool developed

In figures 5-8, we have shown a few top functions, as per
some performance metrics. The values of the metric for
these functions are plotted on the y-axis (this is similar for
the other graphs). Such plots sometimes point us to the
few functions have high values of these metrics, and these
are prime candidates for performance optimization.

In figure 5, we have shown the top five functions as per
the metric “total elapsed time”. This metric quantifies
which part of the code the platform spends most of its
time (executing). From this analysis, it has been found
that the “draw” routines and the “timer events” routines of
JUICE take up much of the CPU time.

Analysis of the fan-in of various functions (see figure 6)
found that the set of functions concerned with resource-
allocation and platform-interaction are being used
heavily. Hence, these are prime candidates for any
performance optimization effort.

Total elapsed time

0
1
2
3
4
5
6
7
8
9

10

Eng
ine

Xpre
ss

Tas
k

isr
po

__
rtk

_E
vtR

ec
eiv

e

Exe
cu

te

Tim
erH

an
dle

rE
ve

nt

jui
ce

krn
__

jtic
k_

Tick

function name

tim
e

in
 s

ec
s

Figure 5: Functions with the highest total elapsed time

Fan-in

0
10000
20000
30000
40000
50000
60000
70000
80000

JP
ut

P
ix

el

xp
re

ss
tk

hl
ld

__
lld

_G
et

C
ol

or

xp
re

ss
tk

hb
m

p_
_

bm
p_

G
et

B
itm

ap
W

id
th

name of function

no
 o

f c
al

ls

Figure 6: Top 5 heavily called functions

In Figure 7, we have depicted the top functions as per the
metric: local elapsed time per call. Recall that this metric
points to the most “heavy” functions. From the results that
we have measured, and also in consultation with the
software architects, it has been concluded that various
“platform” and the “graphics” components seem to
dominate here. These are parts that interact with the lower
layers (hardware, etc), and hence it points to the fact that
either optimization is needed in the hardware, or in the
lower levels of the stack.

In Figure 8, the functions having the highest “elapsed
time jitter” is shown. From this, we have inferred the
(relatively) non real-time behavior of the graphics
components and initialization routines. The architects
confirmed our inferences and this points to the usefulness
of this metric in bringing out non real-time functions.

As stated above, the inferences presented here are just to
give a flavor of what can be read from the collection of
measurements. But, the full set of measurements was very

190

useful to the architects (with a good knowledge of the
functionality of each part of the code) to get some good
insights into the dynamics of the stack. Also, we were
able to generate color-coded call-graphs for various parts
of the JUICE software stack (similar to figure 4), which
were also useful for further analysis efforts.

Local elapsed time

0
0.002
0.004
0.006
0.008

0.01
0.012
0.014

En
gi

ne
Xp

re
ss

Ta
sk

xp
re

ss
lin

ux
te

st
__

ig
fx

pl
n_

S
et

Pl
an

eP
rio

rit
y

xp
re

ss
lin

ux
te

st
__

ig
fx

pl
n_

S
ho

w
Pl

an
e

xp
re

ss
lin

ux
te

st
__

ig
fx

sr
f_

Fl
ip is
rp

o_
_i

ni
t_

In
it

is
rp

o_
_r

tk
_T

sk
C

re
at

eN
o

W
at

ch
do

g

Function name

Ti
m

e
in

 s
ec

s

Figure 7: Functions with the maximum local elapsed
time

Elapsed time jitter

0
0.0002
0.0004
0.0006
0.0008

0.001
0.0012
0.0014
0.0016

En
gi

ne
Xp

re
ss

Ta
sk

is
rp

o_
_r

tk
_E

vt
R

ec
ei

ve

xp
re

ss
lin

ux
te

st
__

ig
fx

pl
n_

S
et

Pl
an

eP
rio

rit
y

ju
ic

es
lim

ba
si

c_
_p

ow
_I

ni
t

xp
re

ss
lin

ux
te

st
__

ig
fx

pl
n_

S
ho

w
Pl

an
e

Function name

st
d

de
v

of
 lo

ca
l e

la
ps

ed
 ti

m
e

Figure 8: Functions with high elapsed time jitter

7. Conclusion and Future Work

This paper outlines a methodology for the performance
analysis of a software stack running on an embedded
Linux platform. In the description of the methodology, the
relevant open-source tools and methods by which this
may be done are outlined. Various metrics for capturing
the dynamic behavior of the software are discussed. From
the description of the method by which the numbers are
gathered, one can observe that the overhead of our
method (in terms of developer and tester effort) is
minimal, and it is error-free. The study included actual
measurements on an existing software stack with
guidance from the concerned architects. But it was done

in such a fashion as to be generic to any software stack
(for which the source code is available), which is built
using the GCC tool chain and which executes in a Linux
environment. It is hoped that this work would help
spearhead a performance-optimized proactive design
paradigm for the realization of responsive CE software,
based on Linux.

There are interesting ways by which our work may be
extended. Right now, all the performance metrics are
collected at the functional level. It is possible to extend
this to the architectural level, taking support from the fact
that architectural specifications would give the mapping
of functions to an architectural component. This would
give effective feedback for improvement of the software
architecture. Also, various possibilities may be explored
to overcome the deficiencies described in section 5.

References
[1] Van Ommering R., “Software Reuse in Product
Populations”, IEEE Transactions on Software
Engineering, pp. 537-550, vol. 31, issue 7, july 2005.
[2] R. Bourgonjon, “The Evolution of Embedded
Software in Consumer Products,” Proc. Int’l Conf. Eng.
of Complex Computer Systems, 1995.
[3] C. U. Smith, Performance Engineering of
Software Systems: Addison Wesley, 1990.
[4] Anu Purhonen, “Performance Optimization of
Embedded software Architecture – A case study”, Proc.
Fourth working IEEE/IFIP Conference on Software
Architecture (WICSA '04), 2004.
[5] Raj Jain, The Art Of Computer Systems
Performance Analysis, Wiley John Wiley and Sons, Inc.,
1991.
[6] R. Pooley, "Software Engineering and
Performance: a Roadmap", Proc. 22nd International
Conference on Software Engineering, Limerick, Ireland,
2000.
[7] P. Clements, R. Kazman, and M. Klein,
Evaluating software architecture: Method ands and Case
Studies, Addison Wesley, 2001.
[8] L. Dobrica and E. Niemela, “A survey on
Software Architecture Analysis Methods”, IEEE
Transactions on Software Engineering, vol. 28, pp.638-
653, 2002.
[9] Blue Mug Embedded Linux Performance Study:
http://www.bluemug.com/research/linux_performance/ind
ex.shtml
[10] IBM Rational PurifyPlus for Linux & Unix:
http://www.pts.com/wp2075.cfm
[11] Function Check Profiler: http://www710.univ-
lyon1.fr/~yperret/fnccheck/profiler.html
[12] AMD Au1200 development board:
http://www.amd.com/us-
en/ConnectivitySolutions/ProductInformation/0,,50_2330
_6625_12409%5E14088,00.html
[13] Cgprof - call graph tool:
http://mvertes.free.fr/cgprof/cgprof.html

191

