
A study on

VARIOUS METHODS
OF

SUDOKU SOLVING

Using Genetic Algorithms

and

Cultural Genetic Algorithms

Department Of Computer Science And Engineering
National Institute of Technology Calicut

Calicut, Kerala 673 601

Winter Semester, 2012



Department Of Computer Science And Engineering
National Institute of Technology Calicut

Certificate

This is to certify that this is a bonafide record of the project presented by
the students whose names are given below during Winter Semester 2011-12
in fulfilment of the requirement of the course on mini project.

Names of Students Roll No

Aviral Nigam B090871CS
Manish Kumar B090925CS

Guide

Lijiya A.

(Asst. Professor)

Date



Abstract

The Sudoku puzzle is most frequently a 9 X 9 grid made up of 3 X 3 sub-
grids. Some cells already contain numbers. The goal is to fill in the empty
cells, one number in each, so that each column, row, and sub-grids con-
tains the numbers 1 through 9 exactly once. Each number in the solution
therefore occurs only once in each of three directions. Most puzzles are
ranked as to difficulty, but the rankings vary from designer to designer. Ge-
netic Algorithms are adaptive heuristic search and optimization algorithm
premised on the mechanism of biological evolution of chromosomes. The
basic concept of GAs is designed to simulate processes in natural system
necessary for evolution, specifically those that follow the principles first laid
down by Charles Darwin. Cultural Algorithms are a branch of evolutionary
computation where there is a knowledge component that is called the belief
space in addition to the population component. In this sense, Cultural Al-
gorithms can be seen as an extension to a conventional Genetic Algorithm.
The objective of this project is to study the concepts of Genetic Algorithm
and Cultural Genetic Algorithm and finding an efficient method for solving
Sudoku puzzles.



Contents

1 Introduction 1

2 Problem Statement 2

3 What is Sudoku? 3
3.1 Simple Sudoku Solution . . . . . . . . . . . . . . . . . . . . . 3
3.2 Code Implementation . . . . . . . . . . . . . . . . . . . . . . 4

4 Genetic Algorithm 5
4.1 Sudoku Solution using Genetic Algorithm . . . . . . . . . . . 6

4.1.1 Solution Space Representation . . . . . . . . . . . . . 6
4.1.2 Fitness Function . . . . . . . . . . . . . . . . . . . . . 6
4.1.3 Cell Fix Function . . . . . . . . . . . . . . . . . . . . . 7
4.1.4 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.1.5 Termination Condition . . . . . . . . . . . . . . . . . . 7

4.2 Code Implementation . . . . . . . . . . . . . . . . . . . . . . 7

5 Cultural Genetic Algorithm 8
5.1 Sudoku Solution using Cultural Genetic Algorithm . . . . . . 9

5.1.1 Population Space . . . . . . . . . . . . . . . . . . . . . 9
5.1.2 Belief Space . . . . . . . . . . . . . . . . . . . . . . . . 9
5.1.3 Evaluate Population . . . . . . . . . . . . . . . . . . . 9
5.1.4 Adjust Belief Space . . . . . . . . . . . . . . . . . . . 9
5.1.5 Variation . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.1.6 Termination Condition . . . . . . . . . . . . . . . . . . 10

5.2 Code Implementation . . . . . . . . . . . . . . . . . . . . . . 10

6 Conclusion 11

References 11

i



Chapter 1

Introduction

Puzzles have been fascinating humans since their development as the most
intelligent beings on this planet and finding their solution has been one of
their most common time pass activity. But since last century these puzzles
have found immense importance in solving day to day problems and since
then mathematicians and algorithmist have been researching on finding eas-
iest and most efficient solutions to these problems. One of the most common
puzzles seen these days is Sudoku and there have been lot of research go-
ing on in finding solutions to this puzzle using various mathematical and
computational techniques.

1



Chapter 2

Problem Statement

To study Genetic Algorithm and Cultural Genetic Algorithm and finding
its application in Sudoku solving.

2



Chapter 3

What is Sudoku?

Sudoku is a logical puzzle game, originally created in puzzle books and then
made available in countless newspaper worldwide. Number puzzles appeared
in newspapers in the late 19th century. On July 6th, 1895 La France framed
a puzzle almost similar to modern Sudoku. These weekly puzzles were a
feature of French newspaper for about a decade but disappeared about the
time of First World War. The modern Sudoku was most likely designed
by Howard Gans, a 74 year old retired architect and freelance puzzle con-
structor from Indiana. The puzzle was introduced in Japan by Nikoli in the
paper “Monthly Nikolist” in April, 1984. In 1986, Nikoli introduced two
innovations: the numbers given were restricted to no more than 32 and the
puzzles became symmetrical.

Sudoku is a Japanese, fun puzzle game. It requires the player to fill in the
9x9 square grids with numbers one to nine. The numbers should be arranged
in such a way that each row, column or box contains one of each number.
Some of the characteristics of Sudoku are :

• A Sudoku should have 30 or less initial values filled in out of 81 total.

• Sudoku should have rotational symmetry.

• Sudoku solving should be entirely logical, no guess work should be
required.

• There must be only one solution.

• The difficulty of a Sudoku is inversely proportional to the number of
initially filled cells.

3.1 Simple Sudoku Solution

1. Take a Sudoku and check for its validity. A Sudoku is valid if none
of the values in it are repeated in their corresponding row, column or

3



grid.

2. Now initialize the empty cells by zero.

3. Now start traversing the Sudoku from left to right column wise in each
row and whenever a zero is encountered start replacing it with values
from 1 to 9 and check for the Sudoku validity with each new value and
stop when validity is achieved.

4. Stop when all the rows have been checked.

3.2 Code Implementation

C language was used for implementing the code. As such no major problems
were faced while implementing the solution code. Complexity of the solution
is polynomial in order of n, where n is the number of initially unfilled cells.

4



Chapter 4

Genetic Algorithm

Genetic Algorithm is a search heuristic and optimization algorithm that
mimics the process of natural evolution. Before going into further details
of genetic algorithms, let us learn a little more about its background. Ge-
netic Algorithm is based on one of the most important theories human kind
has ever come across i.e., “The Theory of Evolution” proposed by Charles
Darwin. This theory mainly states how such a complex human structure
like us evolved from a single celled organism and how it has undergone large
number of biological changes over the century to become what we are now.
The theory has one very important postulate i.e., “Survival Of The Fittest”
which forms the basis of genetic algorithms. By this he explains the most
fundamental truth of the natural world that there exists a ”Natural Selec-
tion” of favorable variations and a fierce “Struggle for Existence” in all living
beings, thereby ensuring the survival of the fittest.

Genetic Algorithm was designed by John Holland at the University of Michi-
gan. One of the key concepts in Genetic Programming using Genetic Algo-
rithms is its “Fitness Function”. A fitness function is a particular type of
objective function that is used to summarize as a single figure of merit, how
close a given design solution is to achieving the set aim.

The key concepts of Genetic Algorithm are discussed below -:

• Each design solution is represented by a string of numbers (preferably
zero and one i.e., binary representation).

• Survival of the fittest: Algorithm replaces ‘n’ worst solutions from the
first generation with ‘n’ newly generated solutions in every phase.

• Each genetic algorithm goes through 4 basic steps - Initialization, Se-
lection, Reproduction and Termination.

1. Initialization phase comprises of selecting a population which acts
upon the problem and from which solution can be derived.

5



2. Selection phase deals with the fitness function with selects the
best individuals from population for reproduction.

3. Reproduction phase has two major portions Crossover and Mu-
tation.

(a) Crossover is done by selection by selecting one or more than
one crossover points from where crossover can be done by
interchanging the two halves of the solution.

(b) Mutation is done by slightly changing the population to get
a new better population.

4. Termination decides when to stop the algorithm after an optimal
solution has been achieved.

Basic Pseudocode for Genetic Algorithm :

Begin:

t=0;

Initialize Population POP(t);

Evaluate Initial Population POP(t);

repeat:

Perform competitive selection on POP(t);

Create population POP(t) from POP(t-1)

by Crossover and Mutation;

Evaluate Population POP(t);

until Termination

End

4.1 Sudoku Solution using Genetic Algorithm

4.1.1 Solution Space Representation

To represent the solution space, we treated all the empty cells as a combi-
nation of integers ranging between 1 and 9, as one individual. Therefore the
solution space consists of only one population group which allows for greater
individual interactions making it computationally less demanding.

4.1.2 Fitness Function

Initialize the value for the row fitness, column fitness and grid fitness with
zero. For fitness function, check the number of repetition in that particular
row and every time when there is repetition of any number except zero, in-
crease the fitness counter of row by one. Same should be applied to columns
and grids. For calculating the fitness value of each solution of Sudoku, add
column fitness, row fitness and grid fitness. The fitness of the solution de-
creases with the increase in the value of the fitness function.

6



4.1.3 Cell Fix Function

For all the elements present in the Sudoku: Take each cell and compare it
with all the cells in its corresponding row, column and grid, and whenever
there is repetition of that number, increase the value of fix by one. If the
value of fix after comparing all the elements is zero, then fix that element.

4.1.4 Mutation

Mutations are applied only inside a grid. Mainly, three different mutation
strategies are commonly used: Swap Mutation, 3-Swap Mutation, and Inser-
tion Mutation. We have used swap mutation strategy. In swap mutation two
unfixed cells are randomly chosen and are swapped. If it is illegal to perform
swap, mutation is omitted. During reproduction, the mutation function is
implemented on each individual of the population. This is done to ensure
that the population converges to a global minimum as opposed to a local
minimum.

4.1.5 Termination Condition

The solution terminates when the value of the fitness function for the solu-
tion is zero.

4.2 Code Implementation

C++ language was used for implementing the code. The complete code
was composed of basic functions of genetic algorithm. The major problem
faced while implementation was in maintaining an efficient interaction be-
tween these functions, which didn’t turn out that well, resulting in loss of
certain valuable information, which could have been extracted from that
code. There arose a problem while comparing and commenting on the time
complexity of code as compared to the brute force method we implemented
earlier, but indeed the space complexity was higher, due to the inclusion of
various functions as required by genetic algorithm.

7



Chapter 5

Cultural Genetic Algorithm

Culture is defined by Durham as a “System of symbolically encoded con-
ceptual phenomenon that is socially and historically within and between
populations”. Cultural Genetic Algorithm is an evolutionary optimization
technique where individuals are influenced both genetically as well as cul-
turally.

CGA is a variant of Genetic Algorithm which includes a belief space. Be-
lief space represents the domain of knowledge about the population. Belief
space is updated after every generation depending upon the new popula-
tion,which can be selected by means of fitness function.

The belief space can be divided into -:

• Normative Belief: where there is a particular range of values to which
an individual is bound.

• Domain Specific Belief: where the information about the domain of
the problem is available.

• Temporal Belief: where the information about important events in
search space is available.

• Spatial Belief: where the topographical information of the search space
is available.

Basic Pseudocode for Cultural Genetic Algorithm :

Begin:

t=0;

Initialize Population POP(t);

Initialize Belief Space BLF(t);

repeat:

Evaluate Population POP(t);

Adjust(BLF(t), Accept(POP(t));

8



Adjust(BLF(t));

Variation(POP(t) from POP(t-1));

until Termination

End

5.1 Sudoku Solution using Cultural Genetic Algo-
rithm

5.1.1 Population Space

We have used the same population space as used in the solution using genetic
algorithm.

5.1.2 Belief Space

Consists of 4 basic categories:

• Normative Belief: each 3x3 grid contains entries between 1 and 9.

• Domain Specific Belief: each 3x3 grid can only contains entries which
are integers.

• Temporal Belief: where the information about important events in
search space is available.

• Spatial Belief: when a mutation is applied to a grid, it cannot alter
the value of a fixed cell. Every time mutation is called, belief space is
updated.

5.1.3 Evaluate Population

Calculates the fitness of population and the fitness function is same as one
used in the solution using GA.

5.1.4 Adjust Belief Space

Belief space is updated according to the new population after each mutation.

5.1.5 Variation

It is same as the mutation function used in the solution using GA where the
new individuals replace the individuals in the population which have the
lowest fitness values and the new generations can be produced using current
state of the belief space.

9



5.1.6 Termination Condition

Termination condition is same for both GA and CGA.

5.2 Code Implementation

Implementation of cultural genetic algorithm has not been covered in this
project, but that can be done on the lines of genetic algorithms.

10



Chapter 6

Conclusion

Sudoku puzzles can be solved with a simple approach, Genetic Algorithm
and Cultural Genetic Algorithm. Simple solution is a brute force method
checking just the minimal necessary constraints. GA can solve Sudoku puz-
zles relatively effectively.The GA results can of course be enhanced by adding
problem related rules. However, if one adds too much problem specific logic
to the Sudoku solving, there will be nothing left to optimize, therefore we
decided to omit most problem specific logic and try a more straight forward
GA optimization approach. And same conditions apply for Cultural Ge-
netic Solution where all the problem related rules are defined in the belief
space and hence the solution becomes more problem specific making it more
efficient than the other two methods.

11



References

[1] Goldberg, David E (1989), “Genetic Algorithms in Search, Optimiza-
tion and Machine Learning”, Kluwer Academic Publishers, Boston, MA.

[2] R. Reynolds.(1994). “An Introduction to Cultural Algorithms.” Pro-
ceedings of the 3rd Annual Conference on Evolutionary Programming.
River Edge, New Jersey:World Scientific;131-139.

[3] Meir Perez and Tshilidzi Marwala.(2008). “Stochastic Optimization
Approaches For Solving Sudoku.” School of Electrical and Information
Engineering, University of the Witwatersrand, Johannesburg, South
Africa.

[4] T. Mantere and J. Koljonen.(2007). “Solving and Rating Sudoku Puz-
zles using Genetic Algorithms.” Proceeding of the IEEE Congress on
Evolutionary Computation, 1382-1389.

[5] Kedar Nath Das and Sumit Bhatia. “A Retrievable GA for Solving
Sudoku Puzzles.”

[6] Darrell Whitley. “A Genetic Algorithm Tutorial.”Computer Science
Department, Colorado State University, Fort Collins.

[7] D Nagesh Kumar.Lecture Notes,IISc, Bangalore.

[8] Sudoku. http://en.wikipedia.org/wiki/Sudoku.

[9] Genetic Algorithm. http://en.wikipedia.org/wiki/Genetic algorithm.

[10] Cultural Genetic Algorithm. http://en.wikipedia.org/wiki/Cultural algorithm.

12


	Introduction
	Problem Statement
	What is Sudoku?
	Simple Sudoku Solution
	Code Implementation

	Genetic Algorithm
	Sudoku Solution using Genetic Algorithm
	Solution Space Representation
	Fitness Function
	Cell Fix Function
	Mutation
	Termination Condition

	Code Implementation

	Cultural Genetic Algorithm
	Sudoku Solution using Cultural Genetic Algorithm
	Population Space
	Belief Space
	Evaluate Population
	Adjust Belief Space
	Variation
	Termination Condition

	Code Implementation

	Conclusion
	References

