Android Power Management

Jerrin Shaji George



Agenda

* Concept

* Linux Power Management

* Android Power Management Design
* Wake Locks

* System Sleep (Suspend)

* Battery Service



Concept

* Designed for mobile devices
* Goal is to prolong battery life
* Build on top of Linux Power Management
o Not directly suitable for a mobile device
* Designed for devices which have a 'default-off' behaviour
o The phone is not supposed to be on when we do not want to use it

o Powered on only when requested to be run, off by default

o Unlike PC, which has a default on behaviour



Linux Power Management

Two popular power management standards

1. APM (Advanced Power Management)

2. ACPI (Advanced Configuration and Power Interface)



Linux Power Management

APM

* Control resides in BIOS
* Uses activity timeouts to determine when to power down a device
* BIOS rarely used in embedded systems

* Makes power-management decisions without informing OS or

individual applications

* No knowledge of add-in cards or new devices



Linux Power Management

APM

* Uses layered approach to
manage devices

* APM-aware applications
(including device drivers)
talk to an OS-specific
APM driver

®* The driver communicates
to the APM-aware BIOS,
which controls the
hardware

APM-aware Application

|

APM Driver
Operating System
Hardware

APM BIOS

I

Hardware Devices




Linux Power Management

APM

APM-aware Application

* Communication occurs in

both directions; power ]
management events are
sent from the BIOS to the APM Driver

APM driver, and the APM
driver sends information Operating System
and requests to the BIOS

Hardware

via function calls

AFPM BIOS
° In this way the APM I
driver is an intermediary
between the BIOS and Hardware Devices

the operating system



Linux Power Management

APM
* Power management APM-aware Application
happens in two ways; ]
through function calls
from the APM driver to APM Driver
the BIOS requesting _
power state changes, and Operating System
automatically based on Hardware
device activity APM BIOS

I

Hardware Devices




Linux Power Management

S AFPM-Aware AP M-Aware APM-AW are APM-AwWares
Applications L L =
PP Application |= = = « Application = = o Device Driver [ = = =|Device Driver
Operating System APM Driver 05 dependent
f APM Interface Q5 independent
L
BIOS APM BIOS
APM BIOS Add-In Add-In
Controlled Device Device

Hardw are




Linux Power Management

ACPI

* Control divided between BIOS and OS
* Decisions managed through the OS

* Enables sophisticated power policies for general-purpose
computers with standard usage patterns and hardware

* No knowledge of device-specific scenarios (e.g. need to provide
predictable response times or to respond to critical events over
extended period)



Linux Power Management

ACPI

ACPI specification defines the following four Global ‘Gx’ states and six
Sleep ‘Sx’ states for an ACPl-compliant computer-system:

* GO (S0)
OWorking

O ‘Awaymode’ is a subset of SO, where monitor is off but background
tasks are running



Linux Power Management

ACPI

* G1, Sleeping, subdivides into the four states S1 through 54:

o 51 : All processor caches are flushed, and the CPU(s) stop executing
instructions. Power to the CPU(s) and RAM is maintained; devices that
do not indicate they must remain on may be powered down

o S2: CPU powered off. Dirty cache is flushed to RAM

o S3(mem): Commonly referred to as Standby, Sleep, or Suspend to RAM.
RAM remains powered

o 54: Hibernation/Suspend-to-Disk - All content of main memory is
saved to non-volatile memory such as a hard drive, and is powered
down



Linux Power Management

ACPI

* G2 (SH), Soft Off
* G3, Mechanical Off

OThe computer's power has been totally removed via a mechanical
switch

* Legacy State : The state on an operating system which does not
support ACPI. In this state, the hardware and power are not
managed via ACPI, effectively disabling ACPI.



Linux Power Management

ACPI

Power
Failure/
Power Off

GO (S0) -
Working




Linux Power Management

* Power mode interface is on sysfs

O /sys/power/state

* sysfs is a virtual file system provided by Linux. sysfs exports
information about devices and drivers from the kernel device
model to user space, and is also used for configuration

* Changing state done by
o # echo mem > /sys/power/state
o # echo disk > /sys/power/state

o # echo standby > /sys/power/state



Linux Power Management

Overview

Wearking State

A A
Standby Resume
Standby State
"1\ Suspend Resume
v to from
R RAM RAM
' v
Shallow:
minimum latency Suspend State
Deep: maximum power savings Hibernate
(]
L] e
'l--‘ T

Restare
fram
Hibernation

Teea > Hibernate State

Power Off

System
running
suspend resume
aleep wakeup
System
suspended



Android PM Design

Built as a wrapper to Linux Power Management

In the Kernel

o Added ‘'on’ state in the power state
o Added Early Suspend framework

o Added Partial Wake Lock mechanism
Apps and services must request CPU resource with ‘wake locks’
through the Android application framework and native Linux
libraries in order to keep power on, otherwise Android will shut
down the CPU
Android PM uses wake locks and time out mechanism to switch state

of system power, so that system power consumption decreases



Wake Locks

By default, Android tries to put the system into a sleep or better a
suspend mode as soon as possible

Applications running in the Dalvik VM can prevent the system from
entering a sleep or suspend state, i.e. applications can assure that
the screen stays on or the CPU stays awake to react quickly to
interrupts

The means Android provides for this task is wake locks

If there are no active wake locks, CPU will be turned off

If there are partial wake locks, screen and keyboard will be turned
off



Wake Locks

Types of Wake Locks
* PARTIAL_WAKE_LOCK

o Ensures that the CPU is running

o The screen might not be on

* SCREEN_DIM_WAKE_LOCK
o Wake lock that ensures that the screen is on, but the keyboard backlight

will be allowed to go off, and the screen backlight will be allowed to go
dim
* SCREEN_BRIGHT_WAKE_LOCK
o Wake lock that ensures that the screen is on at full brightness; the

keyboard backlight will be allowed to go off
°* FULL_WAKE_LOCK

o Full device ON, including backlight and screen



Android PM Design

* Android implements an application framework on top of the
kernel called Android Power Management Applications
Framework

* The Android PM Framework is like a driver. It is written in Java
which connects to Android power driver through JNI

* Currently Android only supports screen, keyboard, buttons
backlight, and the brightness of screen



Android PM Design

Through the framework, user space applications can use
‘PowerManger’ class to control the power state of the device




Green - Native

Blue
Red

- Java
- Kernel

Applications

Wil = newWakelock(...);

Wl.acquire();
Wi.release();

Application B

Applications

Framework

Libraries ____X____
(user space)

&

Linux Kernel

Android_register_early_suspend()
Android_register_early_resumea()

PowerManager
Android os PowarManager

Power
Android.cs Power

Andorid server PowerManagerSenice

Power
Nibfhardware/power.c

{drivers/android/power.c

Linux Power Management




A Finite State Machine of Android Power Management

Touchscreen or keyboard user activity
event or full wake locks acquired

NOTIFI
All partial wake locks CATION
released 3
\

Partial Wake Loccqui red



Android PM Design

* When a user application acquire full wake lock or
screen/keyboard touch activity event occur, the machine will
enter ‘AWAKE’ state

* If timeout happens or power key is pressed, the machine will
enters ‘NOTIFICATION’ state

Olf partial wake locks are acquired, it will remain in ‘NOTIFICATION’
olf all partial locks are released, the machine will go into ‘SLEEP’



Android PM Implementation

* Android PM Framework provides a service for user space
applications through the class PowerManger to achieve power
saving

* The flow of exploring Wake locks are :

o Acquire handle to the PowerManager service by calling
Context.getSystemService()

o Create a wake lock and specify the power management flags for
screen, timeout, etc.

o Acquire wake lock
o Perform operation such as play MP3
o Release wake lock



Kernel Wake Lock

* Used to prevent system from entering suspend or low-power-
state

* Partial Wake Lock behaviour

* Can be acquired/released from Native apps through Power.c
interface

* Can be acquired/released internally from kernel



Wake Locks

How are Wake Locks Managed
°* Wake Locks are mainly managed in Java layer
°* When an android application takes a wake lock, a new instance of

wake lock is registered in the PowerManagerService

o PowerManagerService is running in the java layer

* Registered wake locks are put in a list



Wake Locks

How are Wake Locks Managed

* A Single Partial Wake Lock in Kernel is needed to protect multiple
instance of Partial Wake Locks in Java

Olt is taken on behalf of PowerManagerService class with the name
PowerManagerService

* Other wake lock residing in kernel side are either from Native code
via Power.c APl or taken internally in the Kernel

o E.g. Partial wake lock for keyboard

* There is one main wake lock called ‘main’ in the kernel to keep the
kernel awake

* It will be the last wake lock to be released when system goes to
suspend



Wake Locks

How are Wake Locks Managed

SCREEN _BRIGHT WAKE_LOCK I

Wakelock in > FULL WAKE LOCK III
Java layer
PARTIAL_WAKE_LOCK II SCREEN_DIM_WAKE_LOCK lll

“main”
PARTIAL WAKE LOCK PARTIAL WAKE LOCK

WakeLock ——-
] ) “PowerManagerService”
in Kernel PARTIAL WAKE_LOCK




Wake Locks

Working

* By default, a time out is set to off the screen

° |If FULL_WAKE_LOCK or SCREEN_BRIGHT_WAKE_LOCK has been taken,
when a request comes to the system to go to sleep, the system does
not go to sleep

* If no locks are currently being taken, request is sent through JNI to
suspend the device



Wake Locks

Special behaviour of Partial Wake Lock

* PARTIAL_WAKE_LOCK is maintained in the kernel, not in Java

* When a PARTIAL_WAKE_LOCK in Java layer is taken, internally in the
Kernel a PARTIAL_WAKE_LOCK is taken

* All of the PARTIAL_WAKE_LOCK in the Java layer is protected by one
wake lock in the Kernel
* What is it used for ?

o If a PARTIAL_WAKE_LOCK has been take in java, when system tries to go
to sleep, the android will ask the kernel to go to sleep

o But kernel will check if a PARTIAL_WAKE_LOCK has been taken. If so it
will not suspend the CPU

o CPU could run at a reduced frequency/low power mode for running the
background app



Wake Locks

Special behaviour of Partial Wake Lock

* EG : Audio playback

o When an audio is played, the audio handler, like an ALSA driver, will
take a wake lock in the kernel

o So whenever the device is turned off, we can still hear the audio
because the kernel never fully suspend the audio processing



mA

Battery consumption

50 O Source: Values measured using an industrial power
monitor at SkHz sampling rale, and laking average
power with lowest standard deviation.
400
B Baseline usage
300 B Specific item
200
100
0 Q N NN
& ¥ LSS PSSO
KR o & & 00 R &£ P &
v BP0 PP TGN
& &~ O @Q’ O <
vV >



Acquiring Wake Lock

The flow when a Wake Lock is acquired

» Request sent to PowerManager to acquire a wake lock
« PowerManagerService to take a wake lock
» Add wake lock to the list
« Set the power state
o For a FULL_WAKE_LOCK, PowerState would be set to ON

« For taking Partial wake lock, if it is the first partial wake
lock, a kernel wake lock is taken. This will protect all the
partial wake locks. For subsequent requests, kernel wake
lock is not taken, but just added to the list



Acquiring Wake Lock

The flow when a Wake Lock is acquired

PowerMan agerjava

g
-
o
e
7]
s
o
=1
5
=
[
]
=
=

acquire{FULL WL)

acjuireWWakelock (FULL WL

Audd WL to List

selPowerState

acquire(PARTIAL WL)

acquireWakel ock (FARTIAL WL

Audd WL to List

sl owerState ()

Qnly be done for the FIRST
Parial 'WWake Lock takan

acquireWakel ock (PARTIAL WL,
"PowerManagerService™)

Take Kernel Wake Lock

!



Releasing Wake Lock

The flow when a Wake Lock is released

* Request to release wake lock sent to PowerManager
« Wake Lock removed from the list

 For PARTIAL_WAKE_LOCK release, if the wake lock to be
released is the last PARTIAL_WAKE_LOCK,
PowerManagerService will also release the wake lock in
the kernel. Will bring kernel to suspend

« setPowerState
o If it is the last wake lock, power state will be set to

mem, which will bring the device to standby



Releasing Wake Lock

The flow when a Wake Lock is released

release (FULL WL) release [PARTIAL WL)

P owerMan agerjava

relesseWakel ock (FULL_WWL) reloas eWakel ock (PARTIAL_WL)

Hemove WL from List Hemowve WL from List

s
—
o
E
)
i
-]
=]
-
=
]
=
=]
=8

Cintly I dore Sar The LAST

. Partial 'Wake Lock releassd
selPowerState | selP owerState | o

releaseWakel ock (PARTIAL WL,
"PowerManagerService™ )

Release Kernel Wake Lock

|



Early Suspend

Extension of Linux Power Management Suspend Hooks

Used by drivers that need to handle power mode settings to the
device before kernel is suspended

Used to turn off screen and non-wakeup source input devices
Any driver can register its own early suspend and late_resume
handler using register_early_suspend() API

Unregistration is done using unregister_early_suspend() API
When the system is brought to suspend mode, early suspend is
called first. Depending on how the early suspend hook is

implemented, various things can be done



Early Suspend

Early Suspend: google O Af linux kernel Off Af=Z
FIfBt 22 0 2 linux S original suspend AEf
9FLCD screen off AFO[Off ZAYB}= M.22 AEf
£ 25/0f. LCDE 1 HfE/c| + 3 1f FE 7/
55191 272 AFE0f 23 LCD back-light Lf, G- e
sensor, touch screen 50 B/F 7 EICf. unning

System

early_suspend

suspend

System
Suspended

Late Resume: Early Suspend Sf 42 O/ 2=

MZ L2 MENZ, FAgoogle Of Af linux kernel

0f +=7foFZLf. Linux resume Of 2L & + 8
£/, early suspend A| 7{ &l Z XS O] resume
514 &It

late_resume

resiinie

cup



Early Suspend

* For e.g. consider a display driver
o In early suspend, the screen can be turned off

o In the suspend, other things like closing the driver can be done

* When system is resumed, resume is called first, followed by

resume late



Early Suspend

Power

——————— Manager

(1) goToSleep Service application

setScreenStateLocked(false)
setScreenState
set_screen_state

echo “mem” > /sys/power/state

(2) sleep acquire wakelock
(A), or

release wakelock

Userspace

|
I
|
|
|

quete_twork
3 2

{ early_suspend ]
(3), i

kernel

Unlock main_wake_ lock

queue_work

%
\ (4) check
check - L
' driver
|
" —— : a
If there 1s no wakelock, wake_lock

(5) (B)

or
wake_unlock

go to the suspended state.



Resume Late

|
' PowerManager |
: Service |
;i :
} "R [
y s [
L@ “w  InputManager I
' I
| : I
\ i
: e (/) I
i Rkttt EventHub |
/
\
A
\ = — — S— — — — — —— o— o— — — o— — e— — e em— — —— ———— — — — — S— — — o— — o— — ’ /
echo “on” > /sys/power/state
o : Userspace
3) Potwer kel . kernel
©) Y )] Lock the main_wake_lock
quete_work
resune

(1) Power key press
(interrupt)

(2) .

late_resume




System Sleep

* APl to bring device to sleep when we press the power button
* Require DEVICE_POWER permission

* Can only be called in system process context by verifying uid
and pid

* When power button is presed, an APl goToSleep() is called in
the PowerManager



System Sleep

* goToSleep() will force release all wake locks
* When force releasing all locks, power state will be set to off

* In the JNI bridge there is a function setScreenState.
setScreenState is set to off

* Then setPowerState to mem, ie write a mem to
/sys/power/state



Wakal ook scsjuirall | o Tobee
+ Wiskel ock, relusse (]

¥

Fowerianager

PovarM anagsr . java

]
]
Einder IPC

PowerfanagerService

Powerfansg ey iee v

negguiret® abal ek ) wit Seraan S ala ||
reteaseWWascL ok ] l

i

Watchdog e o uAdwn () Shutdown Thiread

W ichoog aes ShutdownThresd v

anrewEl_oE_ I"'ml.nr_-hlll H T

acoguirety akel ook ()

, ¢ robeasoWW okl ock | setSoreon oo |) l androdd o5 Power robiook ) ,
android_os_Power
andraid_as_Pawer .cpp
| relpase wake ook || |
rebaonk])
acquae wake locki) l s soreon | stabel] *

Power Libe
Furtivsrn ibbordwarn _legacy ipcne possr o lays Irebant.h

v ¥ O mem ¥ rebioot sy cal
| [ Sy sy :H: i [= T H P —— } |

waks Inck wa ks aniock ¥

regisier_eorly_mompend || Android Power Manacemest

kernal! powerhenknlocs c

unnegpEier _early_suepend i) ki il | et i i |y B Rt 2

Sy's Call Handles

appre leye G

Linux Power Management




Battery Service

* The BatteryService monitors the battery status, level,
temperature etc.

* A Battery Driver in the kernel interacts with the physical
battery via ADC [to read battery voltage] and 12C ( Inter-
Integrated Circuit: a multi-master serial single-ended
computer bus used to attach low-speed peripherals to an
electronic device)

* Whenever BatteryService receives information from the
BatteryDriver, it will act accordingly

E.g. if battery level is low, it will ask system to shutdown



Battery Service

Using power supply class in Linux Kernel

/sys/class/power_supply
Utilize uevent mechanism to update battery status
uevent : An asynchronous communication channel for kernel
Battery Service will monitor the battery status based on

received uevent from the kernel



Battery Service

B atteryService

BatteryService .Java

android os_Power
com_android_server _BatteryService .cpp

UEventObserver

A

uevent
|

T

Isysclasdpower_supply

s

B attery Monitor Driver

(Platform Specific )




Battery Service

AcOnline

UsbOnline

BatteryPresent

BatteryLevel

BatteryVoltage

BatteryTemperature

BatteryStatus

BatteryHeaith

BatteryService

INI

com_android_server_BatteryService

—— sty

Linux Kernel

Battery Driver

Hardware




References

* Android Power Management Hacks, Slow Boot

* Power Management from Linux Kernel to Android, Matt Hsu &

Jim Huang, Oxlab

* Analysis of the Android Architecture. Stefan Brahler



