
Dynamic Partitioning of Physical Memory Among Virtual
Machines

[ASMI:Architectural Support for Memory Isolation]

Jithin R
∗

Dept. of Computer Science and Engineering
NIT Calicut, India

jithinr550@gmail.com

Priya Chandran
†

Dept. of Computer Science and Engineering
NIT Calicut, India

priya@nitc.ac.in

ABSTRACT
It is an open challenge for virtualization technology archi-
tects to provide security to Virtual Machine (VM), in the
presence of an infected hypervisor, without much compro-
mise on performance. A few hardware modifications have
been introduced by manufactures like Intel and AMD to pro-
vide a secure VM environment with low performance degra-
dation. These solutions are unable to provide VM isola-
tion in the presence of an infected hypervisor. In this paper
we propose a novel memory architecture model, that can
achieve a secure physical memory region to each VM with-
out performance degradation.

CCS Concepts
•Security and privacy → Virtualization and security;
•Computer systems organization → Cloud computing;

Keywords
Virtualization Security; VM Isolation; Secure VM; Secure
Cloud; Hardware-assisted Virtualization

1. INTRODUCTION
Protection of user data at different levels of architecture like
CPU, memory and I/O devices has to be provided, proved
and assured to convince the users of the credibility of the
system [4] [5] [6]. This paper concentrates on the memory
level protection.

We review literature in the area of memory virtualization
to identify open challenges that prevent hypervisors from

∗Research Scholar
†Professor
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copy-
rights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permis-
sions@acm.org.
SAC 2016,April 04-08, 2016, Pisa, Italy
c©2016 ACM. ISBN 978-1-4503-3739-7/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2851613.2851870

providing a secure physical memory region to VMs without
compromising much on performance. A memory architec-
ture model, ASMI (Architectural Support for Memory Iso-
lation) has been proposed in this paper, aimed at solving
those challenges.

The necessary features for any technology designed for im-
proving VMs in terms of security and performance are iden-
tified in Section 2. Description of the design of ASMI is
given in the Section 3. Section 4 concludes the article with
future directions of research.

2. SECURITY THREATS
Memory protection in the presence of infected hypervisors
is an open research problem [8]. In this context, protection
of memory from the hypervisor level to the hardware level
are desirable [8].

HyperWall [8], an extension to the IOMMU [3] hardware
unit provides hardware for protecting guest VMs from ma-
licious hypervisors. HyperWall architecture aims to protect
only confidentiality and integrity of VMs data and not avail-
ability.

Hyperwall allows the VM user to set the memory page with
a protection level which denies access to DMA and hypervi-
sor. Hence, any malicious VM can use this feature to create
memory starvation for other VMs by locking several pages
at a time. A secure memory architecture should provide the
assurance of a minimum and fair amount of memory to all
VMs at all point of their lifetime.

Extension of our survey on the other availability challenges
shows that a huge volume of unutilized memory is allocated
to VMs [1] [2]. In the current architecture, the requested
physical memory is divided and allocated to VMs when they
are created. Existing solutions [1] [2] to the underutilization
issue are susceptible to covert channel based attacks by col-
luding VMs on the same server.

Clearly the need of the day is to have a memory virtual-
ization infrastructure that supports the following properties
even in the presence of a malicious hypervisors.

• Isolated physical memory region to each VM

• Fair allocation of physical memory among VMs

474

3. ARCHITECTURAL SUPPORT FOR MEM-
ORY ISOLATION

We propose ASMI, Architectural Support for Memory Iso-
lation, that can satisfy the above requirements. Figure 1
illustrates the proposed architecture.

Figure 1: ASMI: Architectural Support for Memory
Isolation

We propose some modifications in the current Intel-VT ar-
chitecture [3] to incorporate ASMI architecture. The modifi-
cations to the memory management unit, the CPU (Central
Processing Unit) and ISA (Instruction Set Architecture) are
described in the rest of this section.

3.1 Memory
In the Intel 64 bit architecture, the address translation mech-
anism disables segmentation and only paging is utilized [3].
In ASMI, segmentation is enabled and used to provide iso-
lation to VMs. The physical memory is partitioned into a
number of physical segments having fixed number of pages.
A hardware unit Pro-mem, controls the entire physical mem-
ory.

A data structure in hardware namedMemory Protection Ta-
ble (MPT) is proposed, and is managed by Pro-mem. MPT
contains the segment ID (SegID) and its corresponding vir-
tual Machine ID (VMID). Each segment can be assigned
only to a single VM at a time. MPT is stored in the primary
memory as shown in Figure 1. The part of main memory
containing MPT is designed to be accessible to the Pro-mem
unit only. At system boot time, MPT would be empty.

3.2 Central Processing Unit (CPU)
A CPU register named VMIDR is introduced in this archi-
tecture, for each processor in the system, and its purpose is
to store the identity of the currently running VM on that
processor. A unique ID is assigned and stored in VMIDR
register by Pro-mem when a new VM is created. Switch
between VMs on a processor causes a change in the VMIDR
value, done by the Pro-mem.

VM or Hypervisor boot up is informed to the Pro-mem unit
through the modified VMLAUNCH instruction. When the
VM exit instruction is executed, VMIDR contents get stored

in the initial address of the first memory segment of the cor-
responding VM and the VMIDR is loaded with the initial
address of the first memory segment of the hypervisor. Sim-
ilarly when the VM entry instruction executes, the VMIDR
value is stored in the initial address of the first segment of
hypervisor and the VMIDR value is loaded from the initial
address of the first segment of the running VM. These load
and store operations are executed by Pro-mem as atomic
operations to VM exit and VM entry instructions.

SegMax is a CPU register, whose values are managed by
Pro-mem. Segmax stores the maximum number of seg-
ments(MSEG) that can be assigned to a VM when the en-
tire physical memory is full. The value stored in MSEG
is computed as the quotient of the total number of physi-
cal segments (TSEG) in primary memory, and TOT, where
TOT is the sum of total number of VMs and hypervisor
running above the hardware. These values are computed by
the Pro-mem unit upon the creation or deletion of a VM

3.3 Instruction Set Architecture (ISA)
In the proposed architecture, VM Entry and VM Exit in-
structions are modified to inform the Pro-mem unit about
the control transfer among VMs and hypervisor in an atomic
manner.

SegMax, MSEG, and TOT values are changed when a new
VM is created or when an old one is destroyed. VM creation
and deletion are informed to the Pro-mem unit by modifying
the VMLAUNCH and VMCLEAR instructions in a similar
manner as VM Exit and VM Entry instructions, which are
used for managing VMCS entries in Intel-VT architecture
[3].

TSEG is fixed at boot time, by the hypervisor, depending on
the page size that the hypervisor is designed to work with.
Initially at boot time, MSEG and TOT are zero. When a
hypervisor is loaded or a VM is created, TOT is incremented
by one and MSEG is recomputed according to the new TOT
value using the modified VMLAUNCH and VMCLEAR in-
structions.

These architectural modifications in CPU, memory and ISA
facilitate the required modifications in memory operations.
The memory operations in ASMI are described next.

3.4 Memory operations
Memory operations in ASMI are explained with reference to
the changes in memory allocation and memory access. We
propose Pro-mem to be installed in between hardware pag-
ing architecture and primary memory, by modifying paging
unit to include Pro-mem functionality. Since all the com-
munication between Pro-mem and VM are done through
the paging unit interface, no modification is required in the
guest OS.

We proposed a new memory page allocation algorithm for
security, as shown in Algorithm 1, that records the allotted
VM of each memory segment.

ASMI page allocation algorithm ensure a minimum number
of physical segments (physical memory) to each VM when
the physical memory need is at its peak. It simultaneously
ensures that physical memory is not be left free or unutilized

475

Algorithm 1 ASMI Page allocation

Input: page struct, virtual address
Output: physical address of main memory

1: Get the list of segments allotted to the VM in MPT
table with ID in VMIDR register

2: if A free page frame in allotted segment exists then
3: Copy the data, in secondary memory corresponds to

the page struct, to page frame in main memory
4: return physical address of the page frame
5: else if Any VM has more than MSEG segments then
6: Free one segment of that VM by requesting the cor-

responding VM to swap 1

7: go to 1
8: else
9: return memory full exception
10: end if

[7] when a VM requires it.

We propose a page access algorithm that ensures that VM
accesses only the allotted segments in MPT. Our proposed
page access algorithm is as shown in Algorithm 2

Algorithm 2 ASMI Page access

Input: physical address obtained from page table
Output: non zero if allowed & zero if not permitted the
access

1: Calculate the segment ID of the physical address
2: Get vmid of the corresponding segment ID from MPT

table
3: if VMID equal to VMIDR register value then
4: return non zero
5: else
6: return zero
7: end if

Access to segments is validated by Pro-mem with the help
of VMIDR value and MPT table. Pro-mem returns zero
to paging unit when a VM or hypervisor tries to access the
segment that is not allotted to it.

3.5 ASMI deployment
ASMI, an architectural solution that requires hardware mod-
ifications, ruling out testing through implementation due to
the high implementation costs. To prove that our architec-
ture is feasible with the current working environment of hy-
pervisor, we verified it through emulation in the hypervisor
kernel.

We chose XEN open source hypervisor as the platform for
emulation. While deploying ASMI in kernel level, we as-
sumed the segment size of ASMI architecture as a single
page. Pro-mem has been emulated using three new files in
XEN. Emulation of all the new registers proposed are done
through global variables. Hardware signals are emulated us-
ing the functions.

Implementation of all these functionalities in the XEN ker-
nel could successfully emulate ASMI on a XEN kernel with-
out modifying the guest OS. Thus, emulation of ASMI on
the XEN hypervisor could prove that the design of ASMI is

feasible with the current environment of virtualization.

4. CONCLUSIONS AND FUTURE WORK
This article presents security challenges in address transla-
tion mechanism of VM technology. Our reviews shows that
issues like fair allocation and isolation have to be considered
for performance improvement and security of VMs.

As a solution to the above mentioned issues, a memory ar-
chitecture model named ASMI, has been proposed and de-
scribed in the paper. ASMI provides an isolated memory
region to each VM and the hypervisor. ASMI has been
illustrated in this paper on an Intel Platform with hard-
ware enhancements to implement the design. To prove that
the model is feasible with the current virtualization envi-
ronment, a XEN kernel level emulation has been imple-
mented. ASMI’s enhancement to the Intel-VT architecture
can thus provide confidentiality, integrity and availability
to VMs through complete memory isolation, irrespective of
hypervisor security without compromising performance.

As a part of our future work for performance comparison, we
plan to identify parameters for performance comparison of
VMs and explore the possibilities for comparing the perfor-
mance of VMs on IOMMU and ASMI enabled hypervisors.

5. REFERENCES
[1] O. Agmon Ben-Yehuda, E. Posener, M. Ben-Yehuda,

A. Schuster, and A. Mu’alem. Ginseng: market-driven
memory allocation. In Proceedings of the 10th ACM
SIGPLAN/SIGOPS international conference on Virtual
execution environments, pages 41–52. ACM, 2014.

[2] J. Hwang, A. Uppal, T. Wood, and H. Huang. Mortar:
filling the gaps in data center memory. In Proceedings
of the 10th ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments, pages
53–64. ACM, 2014.

[3] Intel. Intelő 64 and IA-32 Architectures Software
Developers Manual, Combined Volumes: 1, 2A, 2B, 2C,
3A, 3B and 3C, February 2014.

[4] R. Jithin and P. Chandran. Virtual machine isolation.
In Proceedings of the Second International Conference
on Security in Computer Networks and Distributed
Systems (SNDS 2014), pages 91–102. Springer, March
2014.

[5] M. Pearce, S. Zeadally, and R. Hunt. Virtualization:
Issues, security threats, and solutions. ACM Computing
Surveys (CSUR), 45(2):17, 2013.

[6] A. Rehman, S. Alqahtani, A. Altameem, and T. Saba.
Virtual machine security challenges: case studies.
International Journal of Machine Learning and
Cybernetics, pages 1–14, 2013.

[7] M. Swanson. Security self-assessment guide for
information technology systems. Technical report,
DTIC Document, 2001.

[8] J. Szefer and R. B. Lee. Architectural support for
hypervisor-secure virtualization. ACM SIGARCH
Computer Architecture News, 40(1):437–450, 2012.

476

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32

 D:20160203085439
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 2
 3

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 0
 1

 1

 HistoryList_V1
 qi2base

