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Abstract

Analysis of proteins, hub proteins and their interactions are important in disease identification and drug target finding of drug
discovery process.Markov Clustering algorithm has been effectively used in many bioinformatics applications for analysing large
biological networks. A sequential implementation of the MCL algorithm incurs large overheads, in terms of time costs, as the
network has a large number of protein nodes and edges. Parallel computing techniques implemented with the help of a GPU can
reduce the execution time by operating on various data segments simultaneously. Sequential and parallel implementation of MCL
algorithm generates clusters with low granularity. But due to the scale-free nature of the Protein-Protein Interaction network, flows
simulated in MCL by random walks fail to capture the actual picture of granulated clusters. In order to address this problem with
MCL, we propose to introduce a fast parallel method, in which we pre-process the input data to reduce its uneven density and thus
effectively randomising the network. The convergence of the higher degree node sets to a single node need to be approximated
in this method and to balance this convergence effect, some weight adjustment steps are introduced in the input stochastic matrix.
After MCL is processed, the converged nodes in the resultant network will be replaced by their original node sets. This method
ensures better clustering with more interacting edges. A variant of the above mentioned method with no weight adjustment step
further captures the presence of inter connected links between the dense regions in the network. Since the pre-processing step
removes the dense regions in the graph, the low flow inter connected edges between the dense regions gets more priority in the
MCL process. Hence we have obtained an improved cluster granularity with our new method by boosting the clustering coefficient
from 0.04 to 0.22. Our modified method also sheds more light on the linkages between the various dense regions in the network.
Nearly 4-5X improvement in execution speed was reported when new methods were implemented. We have used NVIDIA CUDA
enabled GPU architecture for implementation purposes.
c© 2014 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of scientific committee of AICADD-2014.
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1. Introduction

Proteins are biological molecules consisting of one or more amino acid chains. They perform various functions
within living organisms, including catalyzing metabolic reactions, replicating DNA, responding to stimuli, giving
structure to biological components, and transporting molecules from one location to another. To achieve these func-
tions they interact among themselves and with other molecules in the body. Therefore, the study of protein interactions
is very crucial for the understanding of cell behaviour, protein complexes and pathways. A Protein-Protein Interaction
Network (PPIN) is the graph obtained by representing proteins as nodes and their interactions with other proteins as
edges1,2. Usually, these networks contain hundreds of proteins and their interactions and analysing these networks
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require efficient computational methods to extract useful information. Clustering is one such useful tool. Using clus-
tering algorithms, proteins can be grouped into various partitions according to their degree of interactions with each
other. In this study, Markov Clustering algorithm (MCL) is the clustering technique used to cluster information from
the PPI network.

A PPI network is scale-free since its node degree follows power-law distribution. So the topological structure of
PPI network has a lot of interconnected dense regions. Each dense region could be a functional module or a protein
complex3. Essential proteins in the PPI network are called hub proteins and they will have high degree4,5. So hub
proteins can be found in dense regions. Any change in a hub protein creates some malfunction and can lead to a
disease whereas change in the interacting partners of hubs has little impact on the network. The other important
component of the network is interconnecting proteins among dense regions. To unearth details like above, one has
to mine the graph deeply. Markov Clustering, a general graph clustering algorithm6,7,8, has been widely used for
the network analysis. MCL involves computationally intensive tasks and thus, implementing MCL on a CPU using
sequential programming methods will fail to produce results within a reasonable time frame due to the large size of the
network. The high parallelism expressed by MCL clustering lead to the idea of using parallel computing techniques
to tackle the complexity of the same9. GPU computing technique, which provides a large level of parallelism using
a fraction of the budget required by usual MIMD cluster architectures, can be considered for this implementation.
Designed with a massive number of floating point units and very high memory bandwidth, GPUs are widely used in
scientific computing to speed up simulation, modelling, visualization, and data analysis. In effect, it gives far greater
processing speeds by enabling many more threads to spawn simultaneously. Since the GPU programming paradigm
substantially differs from the traditional CPU-based computing, algorithms specific to GPU have to be developed, and
this is usually a difficult and tedious process.

When implemented, MCL gave us clusters with weakly interacting links in each cluster. The weakness in the
clustering is because MCL uses random walks for cluster partitioning, and this being relatively ineffective for a scale-
free network such as a PPI network results in low granularity. We analysed MCL algorithm to work around the above
limitation. To address this issue, we developed two new methods that retain the strength of MCL while rectifying its
weakness, in this context. In the first method, the clusters will be in the form of dense regions surrounding hubs while
clusters formed using the second method will have multiple dense regions from which we can identify interconnecting
edges. The first method finds application in the determination of new functional modules whereas the second method
can be used in pathway analysis of disease detection and target identification of drug discovery process. Hence the
implementation of the above methods imparts therapeutic value as well.

The paper is divided into 6 sections: Section 2 describes GPU and its architecture. Section 3 gives background
information about CUDA framework, significance of clustering and MCL algorithm. Section 4 describes two new
MCL based parallel clustering methods in detail. Section 5 deals with the Experimental setup, Dataset and discussions
of the result obtained. Conclusions and future scope are described in Section 6.

2. GPUs for Accelerating HPC Workloads

A GPU is a special purpose processor designed to accelerate the computation of graphic operations. The technical
definition of GPU10 is a single chip processor with integrated transform, lighting, triangle setup/clipping, and render-
ing engines that is capable of processing a minimum of 10 million polygons per second. The design of a GPU is very
special that most of their silicon is utilized to perform arithmetic computations11. With the advent of the GPU, com-
putationally intensive graphic operations were off loaded from the CPU to the GPU, thus allowing for faster graphics
processing speeds12,13,14.

In this paper we focus on the NVIDIA CUDA GPU architecture, as it is the most widely used architecture for GPU
computing, to parallelise the computationally intensive Markov Clustering method.

The peak performance of the some of the GPU cards (from NVIDIA) that we have used in this work is shown
below10:
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Feature GTX 550 Ti GTX 660 Ti
No. of CUDA cores 192 1344
Clock speed 900 MHz 915 MHz
Graphic memory 1024 MB GDDR5 1024 MB GDDR5
Memory bandwidth 98.4 GB/Sec 144.2 GB/Sec
Peak Performance 0.691 TFlops 2.4 TFlops

With power consumption and heat dissipation issues pushing multi-core CPUs to the limit, GPU accelerated com-
puting systems have drawn the attention of researchers because they have tremendous computational power and high
memory bandwidth, and are inherently well suited for massively data parallel computation. The latest top 500
list of the world’s fastest supercomputers included nearly 50 supercomputers powered by NVIDIA GPUs, and the
world’s second fastest supercomputer, Oak Ridge National Laboratory’s TITAN, utilizes over 18,000 NVIDIA Kepler
GPUs15,16. Hence the computing power of the recent GPUs is comparable to the computing power of a cluster with
hundreds of CPUs.

3. Background Work

3.1. CUDA

CUDA (Compute Unified Device Architecture) is a parallel computing platform and programming model devel-
oped by NVIDIA. It enables dramatic increase in computing performance by harnessing the power of the graphics
processing unit (GPU)17. CUDA enabled GPUs are organized in multiprocessors, which group multiple streaming
processors (SMP), as the basic execution units. CUDA executes the same program on all the multiprocessors. The
code for the program the kernel is the same but both the data and execution flow can be different. It can launch mul-
tiple instances of the kernel called threads. These threads are grouped into warps for execution on a multiprocessor.
Hence all threads in a warp will be executed by one multiprocessor in a SIMD manner. The thread management
overhead is very low in this case, since the threads are created and scheduled by the hardware itself and intermediary
software is not involved. All architecture details, threads, warps, and multiprocessors are hidden from the end user;
CUDA instead introduces the notion of threads, blocks and grids to ease the decomposition of the problem domain.
In short, threads are both the physical and logical unit of execution; the GPU groups and schedules threads in warps,
while CUDA offers a higher level view of grids and blocks. Grids and blocks can be used by the programmer to map
the subdivisions inherent in the problem domain in a convenient way18. Each thread is then provided with variables
representing the block and grid co-ordinates on which it needs to operate; using these co-ordinates, a thread can access
and process a single item or subset of the problem domain.

A CUDA program consists of one or more phases that are executed either on the host (CPU) or a device such as a
GPU19,20,18. The phases that exhibit little or no data parallelism are implemented in host code. The phases that exhibit
rich amount of data parallelism are implemented in the device code.

3.2. MCL

Markov Cluster (MCL) is a cluster algorithm for graphs based on the simulation of flow in networks. The crux of
the algorithm lies in the fact that the number of higher length paths and thus the flow between two arbitrary nodes
within a dense region is greater than that between two different dense regions. This property implies that the nodes
encountered during a random walk on the graph will seldom be from different clusters.

MCL is mainly composed of two processes namely expansion and inflation. The former causes flow to dissipate
within clusters and coincide with taking the power of a stochastic matrix whereas the latter eliminates flow between
different clusters. These two are alternated until the matrix they operate on becomes idempotent21.

EXPm(P) = Pm (1)

The algorithm uses a stochastic process called Markov chain which consists of a finite number of states and prob-
abilities pi j which denotes the transition probability or probability of moving from state j to i. If this happens with



4 P. B. Jayaraj et al. / Procedia Chemistry 00 (2014) 000–000

m − 1 states in between i and j, it is called m-step transition probability and is denoted by p(m)
i j . It is calculated by

summing up the probabilities of all possible paths between i and j in m steps. A matrix P constructed using these
probability values is called a transition probability matrix. Here, the nodes of the graph are the Markov states and the
edge weights correspond to the transition probabilities.

p(m)
i j =

∑
r

p(m−k)
ir p(k)

r j (2)

When we write equation(2) in Matrix form,

P(m) = P(m−k)P(k) (3)

Now substitute m = k-1 in equation(3), it becomes

P(m) = P · P(m−1) (4)

From equation (4), we can also write

P(m−1) = P · P(m−2)

Proceeding, we’ll reach
P(m) = P · P · P · · · P = Pm (5)

Inflation operation:

(Γr M)pq = (Mpq)r/

m∑
i=1

(Miq)r; i = 1...m; q = 1...n. (6)

where M is a matrix and r > 1 is a real number.
The inflation operator can be altered by a parameter r, which is directly proportional to the granularity of clusters.

This process involves taking the rth power of every entry in the matrix followed by a normalization step such that
the resultant is a column stochastic matrix. Repeated inflation boosts the entries which have high magnitude thereby
promoting more probable walks and demotes values which are very small. Inflation is followed by a process called
Prune which discards values that are below a threshold value.

Algorithm 1 MCL

A := A + ∆ // Add self-loops to the graph
M := AD−1 // Initialize M as the canonical transition matrix
repeat

M := Mexp := Expand(M)
M := Min f := In f late(M, r)
M := Prune(M)

until M Converges

Interpret M as a clustering

MCL creates high probability edges within every cluster and a few low probability edges among clusters. These
newly formed edges further constraints the flow within the cluster. After inflation, a prune step can be applied to
remove values which are less than a particular threshold value. The process stops when matrix becomes idempotent
under expansion and inflation. Input of MCL can be adjacency or weighted matrix of the graph and output is a matrix
whose rows represent clusters.

Need for parallelising MCL: For a graph with n nodes, execution of serial MCL method will take O(n3) as matrix
multiplication plays a major role in the expansion step. Therefore, sequential execution will take a lot of time to
produce result for large values of n. One solution to improve performance is to adopt parallel programming techniques.
With parallel programming, multiple independent portions of the input data can be processed simultaneously22. Using
this, Matrix multiplication can be done in O(n) by parallel execution7,9,23. Current low cost GPU cards loaded with
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thousands of parallel cores can be utilized for computing in parallel since the clustering application is highly data
parallel.

Limitation of MCL: Serial and parallel MCL implementations gave us clusters with weak interacting links in each
cluster. The weakness in the clustering is because MCL uses random walks for cluster partitioning, and this being
relatively ineffective for a scale-free network such as a PPI network results in low granularity.

4. Proposed methods

In order to rectify the inherent scale-free structure of the PPI network and to correctly identify interactions among
dense regions, a new method has been proposed in this study. This method pre-processes the input network to reduce
its uneven density before applying MCL to get an accurate output. It is effective because it uses the underlying dense
regions of the pre-processed network to form clusters which can then be used to generate the required output. This
method produces clusters with better granularity and size, while a modified version of the above method, with no
weight adjustment step, can lucidly identify the interactions among dense regions.

4.1. Method

We start identifying inherently dense regions of the given network (node sets of high degree nodes - known as hubs
- and their connected neighbours). In a usual PPI network, nodes with degrees higher than 3 are considered hubs. A
new graph is formed by replacing the identified node sets with a new node. Simply stated, node sets converge to a
single node in the new graph. Every node in this new graph will be given a new ID. Edges are created in the new
graph by considering the edge structure of the original PPI network. New edges will be created between two nodes
in the new graph, if their corresponding nodes in the original graph are connected. Since a node in the new graph can
be a node set of the original PPI network, an edge will be formed in the new graph from this converged node to all
the neighbours of connected nodes in the original node set. All edge weights are set as equal to 1 if edges exist in the
original node set and 0 otherwise. To cancel the effect of convergence, edge weights in new graph from converged
node to its neighbours is approximately adjusted. For example, if there are n nodes in the node set excluding the
central hub and ’m’ neighbours, a weight of m/n is added to every edge from the converged node. The value of m/n
is derived from the Markov equation for finding transition probability. From equation (3), the maximum value of
transition probability between a hub and another node through these ’n’ intermediate nodes will be n (1*1 + 1*1 + ...
n times => n). Since these n nodes are not taken into account while calculating probability in new graph, a weight
of m/n is added to each of the m edges of the converged node. Now, the transition probability with these m nodes as
intermediate nodes will be m * (n/m + 1) => n + m. So the effective loss of probability by way of node convergence
can be compensated. In a real case scenario, the loss of probability will always be less than n. The relatively high
probability hence obtained increases the cluster granularity and its size. Now, the MCL algorithm can be applied on
this pre-processed graph. Algorithm 2 illustrates the pseudo code for the method. The clusters obtained after the
MCL process will not contain the actual nodes of original PPI network because of the process of node convergence
and hence these converged nodes have to be replaced with their original node sets. The final clusters obtained will
have more interacting nodes because of the pre-processing (the node convergence and weight adjustments) mechanism
which acts on the original graph. The figure 1 gives an overview of the working of this method when applied to a PPI
network

Algorithm 2 Proposed Method

1: mark valid nodes to converge in G
2: store mapping of nodes in Map
3: create a new graph G’ using Map
4: adjust edge weights in G’
5: apply MCL on G’
6: reconstruct G from G’
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Fig. 1: Overview of proposed method

4.2. Modified Method

To understand how the PPI networks are disrupted due to diseases and to design therapies to manipulate the various
infected states require deep knowledge about the network topology and structure of the networks involved. Hence we
modified our above method to focus on finding the inter connections among dense regions in PPI network. It considers
and deals mainly with interconnecting edges, i.e. in this context, edges which connect multiple dense regions. These
interconnections are clustered to arrive at the relations. The relations among multiple dense regions in the network
cannot be found by applying MCL on the original PPIN, because low flow between these regions will easily lose than
high internal flows in dense regions during inflation step of MCL process.

Due to the scale-free nature of PPI networks, flow density is unevenly distributed in the networks. To reduce this
uneven density, the input graph needs to be pre-processed and this pre-processing will remove dense regions in the
graph and give more priority to the other connections when the MCL algorithm does its processing. A modified version
of method, which uses the same steps except for the step regarding weight adjustment after forming the new graph by
converging the various node sets, will identify the interconnection edges between the dense hub nodes. In this case,
weights of edges from the node which represent a node set to external nodes will be assigned a value numerically equal
to 1 in the new graph, if there exists a connection between them in the original graph. This removes the dense regions
in the graph and gives more priority for other connections which were masked earlier due to the uneven density. The
MCL processing on the above pre-processed graph is powerful enough to capture the interconnected links between
the dense regions, and this partly satisfies our requirement.
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5. Implementation, Results & Discussion

5.1. Experimental setup

• System
CPU Core 2 Duo E8400
GPU GeForce GTX 660 Ti
RAM 4GB DDR2 @800 MHz
SOFTWARE CUDA Toolkit v5

Ubuntu 11.10
• Dataset

Dataset used was obtained from Database of Interacting Proteins (DIP). DIP combines information from a
variety of reliable sources to create a single, consistent set of protein-protein interactions24. DIP has datasets of
many species in various formats. We used tab separated format with every line holding interacting protein IDs,
interaction value and some annotation. Species used for testing are Drosophila melanogaster, Saccharomyces
cerevisiae, Homo sapiens, Escherichia coli and Helicobacter pylori.

• Visualization and Validation
Visualization of network is done using Cytoscape. R scripting language was also used to generate edge set cor-
responding to a network, to form appropriate input for Cytoscape. Validation of the output is done by checking
its biological relevance using STRING - an online tool. STRING is a database of known and predicted protein
interactions. It quantitatively integrates interaction data from some sources for a large number of organisms, and
transfers information between these organisms where applicable. The database currently covers 5214234 pro-
teins from 1133 organisms. STRING also provides search tool for the retrieval of interacting genes/proteins25.
If a set of proteins are given as input, STRING will produce a biological network showing interaction among
them. Therefore biological relevance of final clusters can be verified using this tool.

5.2. Detailed Algorithm for implementation

Algorithm 3 Parallel implementation of proposed Method

1: Deg← store degrees(G)
2: Deg← sort(Deg)
3: for all valid nodes in Deg do
4: Map← parallel mark valid(G, Deg)
5: end for
6: Map← sort(Map)
7: Map← parallel modify map(Map)
8: Map← create new id(Map)
9: Map-back← parallel create mapback(Map)

10: G’← parallel create new graph(G, Map)
11: Deg’← store degree(G’)
12: G’← parallel adjust weight(G’, Deg, Deg’, Map-back)
13: G’← parallel MCL(G’)
14: C← parallel mark node sets(Map, Map-back)
15: C← parallel mark clusters(G’, Map-back)

As is shown, algorithm 3 takes as input, a graph G of N nodes. The variable Deg stores the degree of each node
sorted in ascending order of degree. The GPU function parallel mark valid() marks the nodes to be converged in
their descending order of degree as indicated in Deg. This will be done in parallel using N X N threads. The data
structure Map stores the mapping of nodes during the convergence process. Every node set will have a representa-
tive node to which they will map. The function parallel modi f y map() modifies Map in parallel using N threads
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while parallel create mapback() stores the relation between new nodes and old to reconstruct graph after clustering
in Map-back. In Map-back, a new node representing a node set will be related to its representative node. Graph G′

is constructed from Graph G with new nodes and their relation with original nodes present in Map. The function
parallel create new graph() does the same in constant time using N x N threads. Deg’ is a data structure which
stores the degree of all nodes in graph G′. The function parallel ad just weight() executes weight adjustment and
works in constant time by spawning N X N threads. GPU kernel parallel MCL() ensures parallel implementation of
Markov clustering on input Graph G. The expansion step of MCL which involves matrix multiplication will entail a
complexity of O(n) by N X N parallel thread creation (but the actual hardware is finite in real). The inflation process
of MCL, on the other hand, which involves squaring, summing and normalizing operations will execute in constant
time by separate N x N threads. Kernel functions parallel mark node sets() and parallel mark clusters() recreate
the final cluster in G′ to represent the original nodes of G. Both functions execute in constant time simultaneously
using N, N X N threads respectively. The data set C is harnessed to store the final clusters obtained after the operations
on input graph G.

The source of code and other details of the present implementation can be found at:
http://andromeda.nitc.ac.in/jayarajpb/link1.php?pname= GPU%20based%20Fast%20PPI%20Clustering

5.3. Result

Our experiments resulted in lesser execution time with the proposed methods when compared to MCL because of
the pre-processing step, i.e., converging dense regions to reduce the input graph size, that we adopted. Table 1 shows
this improvement in execution time for various input datasets considered. That means, improvement in execution
time may depend upon the topology of the input network. As the size of PPIN increases, it incorporates more dense
regions and the correspnding improvement in execution time may be significant. Other than the improvement in
execution time, the granularity of clusters formed by our first method is also higher than that of MCL due to the
weight adjustment process adopted after the converging step. This resulted in better clustering results when compared
with MCL on PPIN. Average clustering coefficients of 0.04 and 0.22 were obtained when MCL and proposed method
were applied on PPIN of Saccharomyces cerevisiae respectively. Additionally, average cluster size for our proposed
method was increased from 15.62 to 16.9 and produced 50 less clusters than applying MCL alone.

Species Proteins Method MCL
Drosophila melanogaster 7588 2m17.632s 10m9.013s
Saccharomyces cerevisiae 5085 32.566s 1m56.427s
Homo sapiens 3264 5.904s 35.145s
Escherichia coli 2972 7.317s 19.032s
Helicobacter pylori 715 0.291s 0.403s
Mus musculus 1332 0.633s 2.444s

Table 1: Comparison of execution time of proposed method and MCL on PPINs of various organisms

Our modified method groups related dense regions in to one cluster. Figure 2 shows the Cytoscape representations
of clusters of Saccharomyces cerevisiae PPIN formed by MCL and modified method. Interrelation between dense
regions in the PPIN can not be inferred from clusters formed by MCL as in Figure 2(a). But modified method reveals
them by retaining the links between them as shown in Figure 2(b). Clusters of modified method shows a lot of node
sets connected together, which is absent in MCL approach.

Figure 3 shows a cluster plotted using the String tool. It shows three related regions. But it is difficult to identify
the dense regions and relations from final clusters of modified method since a dense region could be one or a subset
of node set present in that cluster. Nodes in clusters should be plotted with real interactions to identify dense regions
and their connections.
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Fig. 2: Clusters formed from PPIN of Saccharomyces cerevisiae by (a) MCL and (b) modified method

Fig. 3: Three related clusters obtained by modified method and represented using the String tool

6. Conclusion and Future scope

6.1. Conclusion

PPI networks are, in their pristine state, uninformative because of their enormous size. Graph-theoretical ap-
proaches are useful to retrieve information from them. Clustering the network, groups the relatively tight nodes, from
which functional modules and the protein complexes can be identified. Since sequential processing takes a lot of time,
parallel methods using GPUs are adopted to produce fast and effective results. Since a PPI network is a scale-free
network, its topology has many loosely connected dense regions. Two methods proposed in this paper utilize this
property of a PPI network while forming clusters. Inherently dense regions are converged to a single node. This
convergence of the nodes reduce graph size and produces fast results. Since dense regions increase as the PPI network
grows, performance increases with the network size compared to MCL. Performance improvements of first method
increase with input size and produce clusters with higher size. Functional modules and protein complexes can be in-
ferred from the clusters of proposed method, while to identify their relations, modified method is used which clusters
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nodes based on the interconnection of inherently dense regions in the network. Hence these methods use different and
new approaches to analyze a PPI network.

6.2. Future scope

Our modified method can be used to find biological pathways of a network, since they connects multiple dense
regions. These methods can be used to process other scale free networks also. Social networks, Internet, biological
networks are examples of scale-free network.

6.3. Future work

Due to the huge size of the network, memory will be the bottleneck in GPU. Geforce NVIDIA graphics card
generally carries only 1 to 2 GB graphics RAM. As the current network size goes beyond the above limit, one
has to use sparse matrix representations for the graph, which will in turn reduce the memory use because of the
high sparseness of scale-free network. ELLPACK-R is a good storage technique for this implementation. Since an
approximation technique is applied in pre-processing step, the degree of approximation error has to be found by
comparing the new method with regular serial MCL.

Also disease and non-disease datasets of an organism can be analyzed in order to identify irregularities in networks
which would essentially enable a biologist to easily predict a disease in the human body.
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