
A GPU based maximum common subgraph
algorithm for drug discovery applications

P. B. Jayaraj, K. Rahamathulla and G. Gopakumar
Department of Computer Science and Engineering

National Institute of Technology Calicut, India

Abstract—The maximum common subgraph of two graphs,
𝐺1 and 𝐺2, is the largest subgraph in 𝐺1 that is isomorphic
to a subgraph in 𝐺2. Finding the maximum common subgraph
of two given graphs is known to be a NP-complete problem.
An exact solution for the maximum common subgraph problem
can be found by an algorithm that transforms the maximum
common subgraph problem into a maximal clique enumeration
problem. However, as the size of the graph increases, the solution
space of the maximal clique enumeration problem increases
combinatorially. A serial solution to the computationally intensive
problem of complete maximal clique enumeration is tedious. This
paper presents a parallel approach using Graphic Processing Unit
to compute the maximum common subgraph of the given graphs.
The parallel procedure achieves more than tenfold improvement
in computational performance. As an application of the proposed
parallel maximum common subgraph algorithm, two new tools;
LIGANDMATCHER and GRAPHSCREEN are developed. These
tools can be used to narrow down the large ligand search space to
a small number in the screening phase of drug discovery process.

Index Terms—Maximum Common Subgraph, Maximal Clique
Enumeration, GPU, CUDA, Ligand Matching, Virtual Screening

I. INTRODUCTION

GIVEN two graphs 𝐺1 and 𝐺2, the subgraph isomorphism
[1] problem is to determine whether a graph 𝐺1 contains a
subgraph that is isomorphic to a subgraph of 𝐺2. Subgraph
isomorphism is a generalization of the graph isomorphism
problem, which checks whether 𝐺1 is isomorphic to 𝐺2. The
subgraph isomorphism problem can be reduced to problems
like maximal clique enumeration problem and Hamiltonian
cycle problem, and is therefore NP-complete.

The property of structural similarity between two graphs
can be used for determining the similarity between structured
objects. If the subgraphs of two graphs are isomorphic, then
they are called common subgraphs. Maximum Common
Subgraph (MCS) is a common subgraph between two graphs
which has the maximum number of edges. Finding the
maximum common subgraph of two graphs is important,
as it has practical applications in many problems such as
comparison of protein secondary structure, identification of
changes in a chemical reaction, finding of co-expressed genes,
pattern recognition, ligand matching and virtual screening
[2], [3].

The worst case time complexity of finding MCS is
exponential and is computationally difficult to solve. But
because of its wide applicability, considerable effort was
invested into finding algorithms and heuristics which could
reduce the total search space [4]. The most common technique
to find maximum common subgraph of two graphs is based on
a backtracking search tree [5]. The search tree is constructed
from a special root node. A traversal from the leaf node to the
root of the tree will result in a common subgraph [6], [7]. In
order to prevent the search tree from growing unnecessarily
large, different refinement procedures and pruning techniques
have been used [8].

Another method uses the reduction of maximum common
subgraph problem into the Maximal Clique Enumeration
(MCE). Existing parallel algorithms [9] to solve maximal
clique enumeration problem involve decomposition of the
search tree into search subtrees. These algorithms distribute
the various section of the problem into different computing
elements. Because of the high power utilization and huge
investment cost involved in Multiple Instruction Multiple
Data (MIMD) machines, Graphic Processing Unit (GPU)
based parallel solutions are preferred for maximum common
subgraph problem [10].

A. Contribution

The parallel algorithm proposed in this work efficiently
manages the data-intensive nature of MCS and has got consid-
erable speedup over an implementation on a SIMD machine.
The algorithm developed here is the parallelization of the
widely used method of enumerating maximal clique enumer-
ation by Bron and Kerbosh (BK) [11]. The implementation
uses CUDA threads to work on GPU. The software is freely
available at http://ccc.nitc.ac.in/project/GPUMCS/.

The rest of the paper is organised as follows. Section
2 describes existing graph substructure matching methods
and explains the Bron-Kerbosh algorithm for MCE problem
in detail. Section 3 describes the proposed GPU based
solution to MCE. Section 4 stands for results and discussions.
Applications using parallel MCS procedure are also presented
in section 4. Conclusions are given in section 5

2016 IEEE International Parallel and Distributed Processing Symposium Workshops

/16 $31.00 © 2016 IEEE

DOI 10.1109/IPDPSW.2016.65

580

II. BACKGROUND

A. Existing solutions to MCS problem

There are existing works which have transformed the MCS
problem into the maximal clique enumeration problem [4].
Consider two undirected labelled graphs 𝐺1 = (𝑉1, 𝐸1) and
𝐺2 = (𝑉2, 𝐸2) with n and m vertices, respectively. We can
map parts of both graphs onto one another. In this case we
say that certain vertices and edges of graph G1 are compatible
with certain vertices and edges of graph G2. This compatibility
information can be stored in a new graph called 𝑝𝑟𝑜𝑑𝑢𝑐𝑡
𝑔𝑟𝑎𝑝ℎ or 𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑔𝑟𝑎𝑝ℎ. In order to find the maximal
common subgraph, edge product graph; a variant of product
graph is utilized. The edge product graph uses the vertex set
𝑉 = 𝐸1 × 𝐸2, in which the edge pairs have to coincide
with their edge labels and vertex labels. There exists an edge
between two vertices (𝑒1, 𝑒2) and (𝑓1, 𝑓2), if

∙ 𝑒1 ∕= 𝑓1 and 𝑒2 ∕= 𝑓2
∙ either 𝑒1, 𝑓1 in 𝐺1 are connected via the vertex of the

same label as that of 𝑒2, 𝑓2 in 𝐺2

∙ 𝑒1, 𝑓1 and 𝑒2, 𝑓2 are not adjacent in 𝐺1 and 𝐺2 respec-
tively.

In order to have a common subgraph in 𝐺1 and 𝐺2, each
edge pair has to be compatible with all those edge pairs which
form this common subgraph. A clique in the product graph
correspond to a maximal common subgraph in 𝐺1 and 𝐺2

[12]. In the edge product graph if (𝑒1, 𝑓1), (𝑒2, 𝑓2), ..., (𝑒𝑘, 𝑓𝑘)
represents a clique, then 𝑒1, 𝑒2, ..., 𝑒𝑘 of 𝐺1 and 𝑓1, 𝑓2, ..., 𝑓𝑘
of 𝐺2 are common subgraphs.

B. Maximal Clique Enumeration

The problem of maximal clique enumeration is to find
the clique with largest number of vertices. A simple way
is to enumerate all maximal cliques in the graph and select
the largest among them. The running time of the algorithm
depends upon the number of maximal cliques in the graph.
In the worst case the number of maximal cliques will be
3𝑛/3, where n is the number of vertices in the graph [13].
Bron-Kerbosh is the fastest and commonly used algorithm to
solve the maximal clique enumeration problem.

The BK algorithm [11], as in Algorithm 1 finds all cliques
in a graph exactly once. The algorithm works on three sets
C, P and S. Set 𝐶 contains the set of vertices belonging to
the current clique. Set 𝑃 contains all vertices which can be
used for the completion of 𝐶 because they are adjacent to
the vertex added last to 𝐶. In S, all vertices, which can no
longer be used for the completion of 𝐶 are collected, because
all cliques containing these vertices are always generated.
The algorithm starts with the empty sets 𝐶 and 𝑆. Initially, P
includes all vertices of the graph G. During execution, if 𝑃
and 𝑆 are empty, a clique is found and will be reported (line
03). Besides each vertex of 𝑃 is considered in a loop (lines
05 to 11), where the arbitrarily chosen vertex 𝑢𝑖 is eliminated
from 𝑃 . 𝑃 and S are copied into 𝑃 ′ and 𝑆′, respectively (line
07 and 08) for the recursion. The neighbours of vertex 𝑢𝑖 are

generated and stored in N (line 09). Vertex 𝑢𝑖 is added to 𝐶
and it invokes a recursion with P and S as arguments.

All vertices in 𝐶 are pairwise adjacent; i.e. 𝐶 is a vertex set
of a complete subgraph. Each vertex in G which is adjacent
to all other vertices in 𝐶 is either in P or in S. Each vertex u
belonging to set P is adjacent to all vertices in C. The vertices
from P are used for the extension of 𝐶. Once a vertex from
𝑃 is used for the extension of 𝐶, it will be moved to 𝐶. Each
vertex u belonging to set 𝐶 is adjacent to all the vertices in 𝐶.
The vertex sets of all cliques containing 𝐶∪{𝑢𝑖} have already
been enumerated once. If the function call ENUMERATE-
CLIQUES() finishes, the vertex sets of all cliques containing
C have been enumerated exactly once.

The recursion tree generated by BK Algorithm for a given
graph is shown in Figure 1. The edges of the recursion tree
labelled by vertex 𝑢, will be added to the current set 𝐶. The
grey vertex is the root of the recursion tree. Paths from the
root to a white leaf vertex describe cliques in G. Paths from
the root to a black leaf vertex describe complete subgraphs
in G which are not maximal, because they can be extended
by at least one vertex from the nonempty set 𝑆.

Figure 1: A graph and its recursion tree generated by BK
algorithm

C. Existing parallel solutions for Maximal Clique Enumera-
tion

The parallel algorithm presented in [9] is a parallelization of
the above described BK algorithm. It includes a decomposition
of the BK search tree into independent search subtrees. A

581

Algorithm 1 Bron-Kerbosh(BK) algorithm[4]

ENUMERATE-CLIQUES(C, P, S)
C: set of vertices belonging to current clique
P: set of vertices which can be added to C
S: set of vertices which cannot be added to C
N: set of neighbours of a node 𝑢 in 𝐺

1: Let 𝑃 be the set {𝑢1, 𝑢2, ..., 𝑢𝑘}
2: if (𝑃 = 𝜙) and (𝑆 = 𝜙) then
3: REPORT-CLIQUE;
4: else
5: for 𝑖← 1 to 𝑘 do
6: 𝑃 ← 𝑃 ∖ {𝑢𝑖}
7: 𝑃 ′ ← 𝑃
8: 𝑆′ ← 𝑆
9: 𝑁 ← {𝑣 ∈ 𝑉 ∣{𝑢𝑖, 𝑣} ∈ 𝐸}

10: ENUMERATE-CLIQUES (𝐶 ∪ {𝑢𝑖}, 𝑃 ′ ∩𝑁,𝑆′ ∩𝑁)
11: 𝑆 ← 𝑆 ∪ {𝑢𝑖}
12: end for
13: end if

data structure called candidate path structure is used to store
the vertex being visited, the level of the node in the search
tree, set P (candidate-list) and set S (not-used-list) [11] in
the process of decomposition. The set C (current clique) is
stored as a global array in each computing element. The
algorithm was implemented using POSIX threads for shared
memory access and MPI for distributed memory access. It
was tested on a Cray XT4 machine for different biological
networks. The parallel algorithm internally decomposes the
task of traversing the search tree into multiple threads.

Since the nature of the work in this MCE is more data-
intensive, parallelizing the algorithm using SIMD machine
will be beneficial. Implementing the parallelized version on
a GPU is highly desirable, as it offers a large number of
computational cores that are capable of doing floating point
computations in parallel. The cost of installing and maintaining
such a system is comparatively very low, as the power required
for the operation of a GPU is very low. The computational
performance obtained by running this algorithm on a GPU is
very much comparable to that of a supercomputer [14].

III. THE PROPOSED GPU BASED CLIQUE ENUMERATION

ALGORITHM

The proposed GPU based parallel processing method
constructs search tree separately at each level by utilizing the
massive computing power of GPU. Since the use of recursion
is difficult to implement in GPU kernels [15], iterative method
is used in our method. The algorithm initiates from a root
node, which denotes the lower bound of the optimal solution.
In the branch and bound algorithm, the branching is done
according to the search strategy adopted by the algorithm

[16], [17], [18]. The aforementioned algorithm employs a
Breadth First Search (BFS) technique for branching. The
main data structure used in the algorithm is CurrentActiveSet
which contains the list of nodes to be evaluated and which
have not been branched yet. The bounding techniques are
used for the evaluation [19], [20].

The CurrentActiveSet is filled serially until there is a
sufficient number of nodes to generate considerable amount
of threads. GPU can execute large number of threads
parallelly where each thread performs simple operations.
In this algorithm, each thread selects a node from the
CurrentActiveSet and then evaluates a small portion of the
total search space. Considering the given node as a root, each
thread performs a BFS operation on the graph. Each thread
must be well aware of the branching and evaluation rules
for them. Hence these procedures must be implemented as
device functions (kernel functions). The new nodes found
by each of the threads will be added into the set of partial
solutions. The newly generated nodes are then evaluated
by simple procedures. The number of times the kernel is
invoked depends upon the enormity of the problem. Each
time the kernel is called, proportional number of threads will
be launched and the sub problems being analysed will be
more confining than the sub problem used in the previous
searches.

When the kernel is invoked, each thread will perform
operations based on its bounds there by returning the partial
solutions to the CurrentActiveSet. This CurrentActiveSet will
be processed by another set of threads in the next kernel
invocation. This design has the advantage of segmenting the

582

search space. It allows the solution space to be evaluated
in concurrent pieces and in less time. The serial portion of
the implementation starts with a node at level 0, which is a
special root node for the branch and bound tree. 𝑛 Nodes are
added to the tree at level 1 representing 𝑛 one-vertex cliques,
where 𝑛 is the number of vertices of the graph. A node at
level x represents an x-vertex clique.

Algorithm 2 presents the proposed data parallel MCE
algorithm. The algorithm commences by reading the graph
data and the features of the GPU. In the next step an initial
CurrentActiveSet is populated, which contains all the nodes
in the graph. The number of threads and blocks that are
required to service the CurrentActiveSet is determined. The
current active set and graph data are copied to device memory
and adequate number of threads will be launched. Here each
node 𝑖 taken from the current active set will become a BFS
root and its child nodes are generated by a thread 𝑇𝑖. The
thread 𝑇𝑖 will produce nodes which are contiguous to node i
and then adds it into the search tree in the next level. In our
implementation, these new nodes will be added to the current
active set atomically (thread by thread). When the threads
accomplish their task, a synchronization step is executed to
update the tree stored in CPU. The newly generated nodes
are then passed on to the device memory and the device
functions are called again. Once the CurrentActiveSet is
empty, the algorithm will terminate. The number of levels of
the search space is required to be identified for populating the
initial values of the CurrentActiveSet. If the number of levels
used for the initial set is L, then there will be a maximum of
N(N-1)(N-2)...(N-L) nodes present in the CurrentActiveSet.
Figure 2 depicts the parallel evaluation of the BK search tree.
All nodes in the same level are generated in the same level
of iteration.

In this implementation we have used device memory for
allocating the CurrentActiveSet. Considering the vastness of
data and nature of parallelism, transferring the code to shared
memory does not contribute speed improvement and hence
have not been considered in this paper.

IV. RESULTS AND DISCUSSION

A. Results: Comparison of Serial and GPU Implementations

The serial and GPU based parallel version of the algorithms
have been implemented and an experiment was conducted
for graphs of size 50 to 300 nodes. In the experiment each
implementation has performed a complete enumeration. The
input graphs are constructed using 𝑟𝑎𝑛𝑑() function. The
execution time is measured using glibc’s 𝑔𝑒𝑡𝑡𝑖𝑚𝑒𝑜𝑓𝑑𝑎𝑦()
function, which provides a precision of microseconds.

The hardware configuration used for experimentation is
shown in Table 1. An average speed up of 5 to 10 is achieved.
Experiments are conducted with 6 randomly generated graphs
(1-6 items in Table 2) and 7 DIMACS graphs (7 - 13 in Table
2. They are standard benchmark graphs used in Maximum

Figure 2: The parallel evaluation of BK search tree. A) The
input Graph B) CurrentActiveSet is initiated C) First iteration:
Kernel evaluated the first level nodes D) Second iteration of
kernel evaluation E) Last iteration: Final BK search tree is
built

Clique problem). The run time and size of the maximal
cliques found are summarized in Table 2. The speed up
of small size graph is less due to the CPU-GPU transfer
overhead appearing in the execution flow.

B. Applications using the proposed GPU parallel MCE algo-
rithm

The maximum common subgraph problem solution
has many pragmatic applications in different areas like
bioinformatics, cheminformatics, pattern recognition [2], [3],
[21]. As applications of the newly developed GPU based
maximum common subgraph algorithm, two useful tools for
drug discovery were developed as follows:

1. LIGANDMATCHER: A ligand matching tool to compare
two ligands for their substructure similarity.

2. GRAPHSCREEN: A virtual screening tool for selecting
the lead molecules from a set of unknown compounds against
a given active compound.

LIGANDMATCHER: According to similar property prin-
ciple [3], compounds which have a similar structure also
will have same biological activity and chemical similarity.
So a compound which has a similar structure to that of a
resistant drug, can also act as a drug to the same disease.
So finding maximum common substructure will help to find
the replacement for the resistant drug. Here this tool will

583

Algorithm 2 Proposed Parallel Maximal Clique Enumeration Algorithm

Input

G - Edge-Product Graph of two Graphs G1 and G2

Output

M - Maximal Clique in the Graph G

1: Read the graph G
2: 𝑣 ← Number of vertices of Graph G
3: 𝐴← Initiate the CurrentActiveSet
4: Copy G into the GPU
5: repeat
6: 𝑝← no of nodes in 𝐴
7: for node 𝑖 from 1 to 𝑝 in 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 do
8: for all neighbour node 𝑚 of 𝑖 do
9: if node 𝑚 is not a parent of node 𝑖 in 𝐴 then

10: atomically add 𝑚 to 𝐴
11: end if
12: end for
13: end for
14: until No changes in 𝐴
15:

16: 𝑀 ← Backtrack 𝐴 to get the Maximal Clique

Particulars GPU1 GPU2
GPU NVIDIA GeForce GTX 780 TESLA K20
CUDA Cores 2304 2496
GPU Clock Speed 941 MHz 706 MHz
Graphic Memory 3072 MB 4800 MB
Memory Bandwidth 288.4 GB/Sec 208 GB/Sec
Peak Performance 4 TFlops 3.52 TFlops
Compute Capability 3.5 3.5
CPU Intel Core i7 Xeon 2650

Table I: Hardware Configuration used

Sl Graph Nodes Max Clique CPU (s) GPU-GTX-780 (s) GPU-TESLA K20(s)
1 Graph1 50 5 0.012547 0.067277 0.033104
2 Graph2 100 9 1.563211 0.851731 0.297795
3 Graph3 150 10 6.43192 3.45219 1.671103
4 Graph4 200 11 186.516308 23.381524 4.956453
5 Graph5 250 10 2795.03886 285.12978 45.19026
6 Graph6 300 11 4792.518 514.815894 98.813951
7 johnson8-2-4 28 4 0.000321 0.009524 0.006102
8 johnson8-4-4 70 14 4.963601 2.612952 1.319193
9 hamming6-4 64 4 0.002371 0.044246 0.021785
10 cfat-200-1 200 12 0.179545 0.097485 0.058856
11 cfat-500-1 500 14 3.32982 0.414055 0.269897
12 keller4 171 11 857.2841 220.9887 71.033145
13 hamming8-4 256 16 21390.449 3752.1410 1339.1932

Table II: Runtimes and size of maximal cliques found by the serial and parallel algorithms.

584

help to find the lead molecules from which we can iden-
tify the replacement for the resistant drug. The ligand data
files are obtained from RCSB protein data bank [22] in
the macro molecular crystallographic information file format
(mmcif). This file is parsed for obtaining atoms and bonds
in the ligand molecule. This information is used to create
labeled graph representation for matching. Atoms in ligand
correspond to vertices in the graph and the bonds between
atoms are represented as edges of the graph. The graphs
were compared using the proposed parallel procedure for their
common substructure similarity. The alignment of ligands 4-
chlorobenzaldehyde and 4-nitrobenzaldehyde by this tool is
shown in Figure 3. See the CUDA C implementation at
http://ccc.nitc.ac.in/project/GPUMCS/LIGAND MATCHER/.

Figure 3: A) Ligand1 : 2-acetyloxybenzoic acid(AIN), B)
Ligand2 7-oxo-7H-benzimidazo[2,1-a]benz[de]isoquinoline-3-
carboxylic acid(609). C) Common substructure of AIN and
609

GRAPHSCREEN: The drug discovery process is a time
consuming and expensive process which in general consumes
500 million dollars to billions of dollars [23] as development
cost. The time for a potential drug candidate to be discovered
and reach the pharmaceuticals stores can be more than 10
years. Here Virtual screening (VS), an in silico method
can help us to reduce the time for developing a drug by
identifying bio active compounds for the disease through
computational methods. Ligand based virtual screening
will be the best approach when the information about
biological target is not available [21], [24]. A simple principle
which can be used for this is that, compounds with similar
structures will show similar biochemical properties. Many
structural similarity measures have already been developed
to accurately quantify the similarity between compounds.

The size of the maximum common subgraph (MCS) between
two compound graphs can also be used as a good metric
for compound (structural) similarity [3]. So MCS method
can also be employed for ligand based Virtual Screening.
We have developed a tool named GRAPHSCREEN for
virtually screening the chemical compounds using the newly
proposed parallel MCS algorithm. The working of the tool
and the parallel algorithm used are described in Algorithm
3. The ligand files (both active and unknown) obtained in
the Structured Data File (SDF) format from PubChem are
parsed to build the graph. The edge table describing number
of elements, nature of bonds present between two atoms is
built from the SDF file of the compound. To apply the MCE
algorithm to find the common substructure, it is required to
map parts of both the graphs onto one another. The Edge
product graph (EPG) of the given graphs is created (by a
procedure named BuildEdgeProductGraph) and used in GPU
parallel BK algorithm for finding the maximal clique present
in the graph. From the obtained clique, one can easily re-map
the substructure which is common in the compounds.

A pool of unknown compounds downloaded from
PubChem [25] for virtual screening is ranked accord-
ing to the extent of similarity with the given ac-
tive compound by cosine similarity rule. The source
code of the PyCUDA implementation can be found at
http://ccc.nitc.ac.in/project/GPUMCS/GRAPHSCREEN/.

Table 3 shows the time difference when the virtual screening
tool was executed in serial and parallel. First two columns
represent query and unkonwn (target) compounds. They are
shown as pairs of atoms and bonds. It is clear from the table
that the serial version cannot complete the execution due to
serial exception error when the graph size becomes larger. This
time difference shows the viability of this parallel tool for the
ligand comparison for drug discovery applications.

Table 4 shows the Top 10 screened compounds when
benzene was compared with a pool of 1,00,000 unknown
compounds for their similarity using GRAPHSCREEN.

Table 5 shows the change in the execution speed with
change in number of unknown compounds in virtual screening
by the GRAPHSCREEN tool.

V. CONCLUSION

Maximum common subgraph problem has pragmatic
applications in a myriad of areas like bioinformatics,
chemistry, pattern recognition etc. As the size of the
graphs increases the solution search space also escalates
combinatorially. Therefore parallel solutions are endorsed
over serial solutions for MCS problem. Considering the
enormity of data, a parallelized version of MCS has a
reduced running time and increased throughput. The cost of
installation, power consumption and maintenance of a GPU
based system is less than other multicore systems. Thus, the
GPU based MCS is a viable alternative to quickly compare
graphs at a comparatively lower cost. The parallel algorithm
presented in this paper is able to handle the data-intensity

585

Algorithm 3 Parallel Algorithm for Virtual Screening using MCE using GPU Computing

Input

ACTIVE - Structured Data File(SDF) of Active compound

UNKNOWN - Pool of SDF files of unknown compound whose ACTVITY may be predicted

Output

Ranked pool of UNKNOWN compounds by sub structure similarity

1: 𝐺𝑇 ← Build Edge Table from ACTIVE input file
2: 𝐺𝑄← Build Edge Tables from UNKNOWN input file
3: for each Graph 𝐺 in 𝐺𝑄 in CPU Parallel do
4: 𝐸𝑃𝐺← BuildEdgeProductGraph(𝐺, 𝐺𝑇)
5: Add 𝐸𝑃𝐺 to EPGBUFFER
6: end for
7: for each Graph 𝐺 in EPGBUFFER in GPU Parallel do
8: 𝑣 ← number of vertices in 𝐺
9: 𝐴← Initiate the CurrentActiveSet

10: Allocate GPU Memory
11: Copy CurrentActiveSet into the GPU
12: repeat
13: 𝑝← number of nodes in CurrentActiveSet
14: for node 𝑖 from 1 to 𝑝 in parallel do
15: for All neighbour node 𝑚 of 𝑖 do
16: if node 𝑚 is not a parent of node 𝑖 in 𝐴 then
17: Atomically add 𝑚 to 𝐴
18: end if
19: end for
20: end for
21: Synchronise GPU threads
22: until No Changes in 𝐴
23:

24: 𝑀 ← Backtrack Active Set 𝐴 to get the Maximal Clique
25: Calculate the Common Subgraph and Count the nodes and Edges present in it
26: Compute the similarity of common subgraph with the query graph in terms of number of edges
27: Rank the compounds according to the obtained Consine Similarity value
28: end for
29:

Query(atoms, bonds) Unknown(atoms, bonds) EP Graph Size Maximal Clique Size Serial Time(sec) GPU time(sec)
(18,19) (23,24) 89 15 356.70 5.33
(18,19) (22,23) 103 15 924.26 4.56
(18,19) (20,21) 85 13 210.89 3.09
(18,19) (35,37) 136 12 Not Running 3.69
(18,19) (38,40) 148 10 Not Running 4.56
(18,19) (17,17) 53 10 93.40 3.08
(18,19) (31,32) 109 7 1028.35 3.27
(20,21) (31,32) 133 15 Not Running 5.68
(20,21) (22,23) 125 10 Not Running 5.63
(25,26) (23,24) 155 16 Not Running 17.4
(25,26) (20,21) 144 14 Not Running 5.49
(31,31) (17,17) 87 10 346.08 3.30

Table III: Comparison of CPU time and GPU time for various query compounds for screening out the lead molecules

586

Rank Query Unknown Bonds in Query Bonds in unknown Similarity
1 Benzene compound-94089 13 11 0.585369
2 Benzene compound-2436 13 12 0.560449
3 Benzene compound-32616 13 12 0.560449
4 Benzene compound-39287 13 12 0.560449
5 Benzene compound-55925 13 12 0.560449
6 Benzene compound-843 13 13 0.538462
7 Benzene compound-11906 13 13 0.538462
8 Benzene compound-16672 13 13 0.538462
9 Benzene compound-19285 13 13 0.538462
10 Benzene compound-19487 13 13 0.526235

Table IV: First 10 Ranked elements of GRAPHSCREEN virtual screening

Sl.No No of compounds Execution time (sec)
1 1 0.10
2 5 0.53
3 10 1.06
4 100 10.59
5 1000 105.83
6 10000 1057.57
7 50000 5285.78
8 100000 10570.69

Table V: Variation in run time of GRAPHSCREEN with change in input compound set.

of the problem for large graphs. The algorithm uses the
BK method of maximal clique enumeration for solving the
common substructure problem. By using this newly developed
parallel algorithm, two application tools for ligand based
drug discovery are developed, which can speed up the drug
discovery process.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

ACKNOWLEDGMENT

We would like to thank Central Computer Centre, National
Institute of Technology Calicut, India and NVIDIA Corpora-
tion LTD for providing the CUDA based GPU infrastructure.

REFERENCES

[1] Ullmann and J. R, “An algorithm for subgraph isomorphism,” Journal
of the ACM, vol. 23, pp. 31–42, 1976.

[2] Y. Cao, T. Jiang, and T. Girke, “A maximum common substructure-
based algorithm for searching and predicting drug-like compounds,”
BIOINFORMATICS, vol. 24 ISMB, p. 366 374, 2008.

[3] P. J. durand, R. Pasari, J. W. Baker, and C. che Tsai, “An efficient
algorithm for similarity analysis of molecules.” Journal of Chemical
information and Modeling, vol. 2, 1999.

[4] I. Koch, “Enumerating all connected maximal common subgraphs in
two graphs.” Theoretical Computer Science, vol. 250, no. 1-2, pp. 1–30,
2001.

[5] J. J. McGregor, “Backtrack search algorithms and maximal common
subgraph problem.” Software-Practice and Experience, vol. 12, pp. 23–
34, 1982.

[6] H. Bunke, P.Foggia, C. Guidobaldi, C. Sansone, and M. Vento, “A
comparison of algorithms for maximal common subgraph on randomly
connected graphs.” Structural, Syntactic and Statistical pattern recong-
nition, pp. 85–106, 2002.

[7] D. Conte, P. Foggia, and M. Vento, “Challenging complexity of maxi-
mum common subgraph detection algorithms: A performance analysis
of three algorithms on a wide database of graphs,” Journal of Graph
Algorithms and Applications, http://jgaa.info/, vol. 11, pp. 99 – 143,
2007.

[8] P. Ostergard, “A fast algorithm for the maximum clique problem,”
Discrete Appl. Math. 120, pp. 197–202, 2002.

[9] M. C. Schmidt, N. F. Samatova, K. thomas, and B.-H. Park, “A scalable,
parallel algorithm for maximal clique enumeration.” Journal of Parallel
distributed computing, vol. 69, pp. 417–428, 2009.

[10] B. Subramaniam, W. Saunders, T. ScogJand, W. chun Feng, and V. T.
Department of Computer Science, “Trends in energy-efficient comput-
ing: A perspective from the green500,” A white paper.

[11] C. Bron and J. Kerbosch, “Algorithm 457: finding all cliques of an
undirected graph,” Commun. ACM, vol. 16, no. 9, pp. 575–577, Sep.
1973.

[12] G. Levi, “A note on the derivation of maximal common subgraphs of
two directed or undirected graphs.” Calcolo, vol. 9, pp. 341–352, 1972.

[13] E. Tomitaa, A. Tanaka, and H. Takahashi, “The worst-case time com-
plexity for generating all maximal cliques and computational experi-
ments,” Theoretical Computer Science 363, p. 28 422, 2006.

[14] D. B. Kirk and W. mei. W. Hwu, Programming massively parallel
processors, A hands on approach. Morgan Kaufmann, 2010.

[15] J. Jenkins, I. Arkatkar, J. D. Owens, A. Choudhary, and N. F. Samatova,
“Lessons learned from exploring the backtracking paradigm on the gpu,”
Euro-Par 2011 Parallel Processing 17th International Conference, Euro-
Par 2011, Bordeaux, France, August 29 - September 2, Aug. 2011.

[16] T. C. Pessoa and M. J. N. Gomes, “Jurema, a new branch and bound
anytime algorithm for the asymmetric travelling salesman problem,”
In: Annals of the XLII Simpsio Brasileiro de Pesquisa Operacional, p.
70690, 2010.

[17] T. Carnetro, A. E. Muritiba, M. Negreiros, and G. A. L. De Campos,
“A new parallel schema for branch and-bound algorithms using gpgpu,”
Computer Architecture and High Performance Computing, vol. 1550-
6533, pp. 41 – 47, 2011.

[18] T. Carnetro, M. Muritiba, A. E. De Campos, and G. A. L. Negreiros,
“Solving atsp hard instances by new parallel branch and bound algo-
rithm using gpgp,” Iberian Latin American Congress on Computational
Methods in Engineering (CILAMCE), 2011.

[19] T. C. R. N. M. N. G. A. L. de Campos, “Depth-first search versus
jurema search on gpu branch-and-bound algorithms: a case study,” XXXII
Congresso da Sociedade Brasileira de Computao,Brazil.

[20] K. Kurowski and M. Mackowiak, “Parallel branch and bound method
for solving traveling salesman problem using cpu and gpgpu volunteer
computing and the xmpp protocol,” The 25th International Conference
on Advanced Information Networking and ApplicationsBiopolis, Singa-
pore, March 22-25, 2011.

[21] H. Eckert and J. Bajorath, “Molecular similarity analysis in virtual

587

screening: foundations, limitations and novel approaches,” Drug Dis-
covery Today, vol. 12, no. 5/6, Mar 2007.

[22] “RCSB protein data bank,” http://www.rcsb.org/pdb/home/home.do.
[23] C. P. Adams and V. V. Brantner, “Estimating the cost of new drug

development: Is it really 802 million dollar?” health affairs, vol. 25,
2006.

[24] A. C. Schierz, “Virtual screening of bioassay data,” Journal of Chem-
informatics, vol. 21, pp. 1–12, December 2009.

[25] “NCBI PubChem,” https://pubchem.ncbi.nlm.nih.gov/.

588

