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ABSTRACT 
 
This paper1,2 presents a case study of dynamic 
performance analysis and bottleneck identification of a 
large application software stack on a Linux-based 
embedded platform. We use some standard techniques for 
performance analysis, but we also try out some techniques 
that are not so common for performance characterization 
and visualization. The methodology used for 
measurement collection is generic and hardware-
independent (software-centric), and it is relevant for any 
effort that develops embedded applications on a Linux 
platform. Using this methodology, we have analyzed the 
performance of the JUICE (Joint User Interface and 
Control Engine) software stack developed within Philips, 
running on a Linux-based embedded platform. We have 
identified relevant metrics, detailed the tools and methods 
by which they can be collected (given the existing open-
source tool chain) and discussed the salient aspects of 
performance analysis and visualization of the collected 
measurements. We conclude that the open-source tool 
chain provides good support for such measurement 
collection and can aid further performance analysis 
efforts. We also discuss the various gaps and issues in the 
existing tooling that we have come across in this effort. 
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1. Introduction 
 
More and more embedded systems and CE (consumer 
electronics) devices are being labeled as software-
intensive, with the amount of software in these systems 
reaching several megabytes [1][2]. In [1], the fact that the 
amount of software in CE devices is growing at an 
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exponential rate (quite similar to moore’s law) is well 
brought out. It is further explained that the amount and 
complexity of functionality implemented in software is 
increasing by leaps and bounds (current high-end TVs 
hold about 10MB of software). This makes the realization 
of systems that are responsive to user inputs a 
considerable challenge. The fact that early performance 
analysis is critical in general software development was 
realized in the early 90’s [3]. Nowadays, the scenario in 
the CE world is no different; the role of timely 
performance analysis of systems and software is crucial 
for the realization of responsive and robust CE devices.  
 
Linux is readily establishing itself as one of the most 
important and versatile operating systems to enter the 
embedded computing domain. There are several examples 
of the usage of Linux platforms to realize products in the 
CE software development community, but much of these 
efforts don’t yet address the problem of performance 
analysis in a systematic manner. On the other hand, hard 
real-time system development has performance 
management as a significant component [4]. Additionally, 
performance analysis for embedded systems in the CE 
(consumer electronics) has been concentrated on the 
hardware aspects of the platform. Hence, studies were 
done on low-level aspects of the system like the memory 
cache, bus bandwidth, bus utilization, etc. In such 
systems, the application software was simple, and most of 
the performance problems were caused in the layers 
below it. But with the growing complexity of software, 
performance bottlenecks caused by software is gaining 
prominence. Another traditional way of doing 
performance analysis involved the manual 
instrumentation of the code (to gather timing values, etc) 
and the tabulation and analysis of collected values. This is 
both time-consuming and error-prone, and hence, one 
should explore ways in which any code instrumentation 
can be done (as much as possible) in an automatic 
fashion. 
 
In this work, we examine aspects of performance analysis 
of application software stacks running on Linux, and how 
performance bottlenecks in these can be found out – early 
and effectively. Also, the objective was to get insights 
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into issues in performance analysis of applications on 
Linux-based embedded platforms. This effort would also 
help identify relevant tools and methods by which such 
analysis can be done, and also gaps in this tooling 
available. 
 
Performance characterization is a description of the 
qualities and peculiarities of a system related to its 
performance, mainly its behavior and response under 
certain conditions. Performance characterization must be 
as quantitative as possible, so that the system can be 
compared with other similar systems. Performance 
analysis is the study of the measurements collected from a 
characterization exercise, by which performance issues 
(like bottlenecks) can be identified [5]. The main 
contribution of this work is the exploration of the ease by 
which systematic performance analysis can be done on 
large application software stacks on embedded Linux 
platforms. The end-objective is to develop a quick and 
effective methodology for the identification of bottlenecks 
and for getting better insights into the dynamic execution 
aspects of large software stacks. Also, we present several 
metrics for performance characterization, including a 
metric by which we characterize the real-time nature of 
components of software stacks. Contributions are also 
made in the area of performance visualization by 
enhancement of the available tool chain in this respect. 
 
The rest of this paper is organized as follows. We shall 
look at other work that is relevant to this study in section 
2. In section 3, details are given about the JUICE software 
stack, on which the performance analysis studies are 
done. Section 4 outlines the several metrics that were 
identified for the characterization of application stacks. 
We shall elucidate on the tools and methods used for the 
collection of the measurements, in section 5. Some of the 
performance analysis and visualization results will be 
presented in section 6. Concluding remarks will be made 
in section 7. 
 
2. Previous Work 
 
 There are some papers that describe an analytical 
approach to the problem of performance management, in 
which mathematical models are described wherein the 
performance of the system can be predicted. In general, 
the performance of a system can be predicted by symbolic 
or numerical analysis, or simulation. Among these, 
analytical solutions are considered to be more faster, and 
it should be there for be more suitable for a quick 
evaluation [6]. An architectural approach to performance 
analysis is also used [7][8]. A similar approach for 
software architecture evaluation strategy of non-safety 
critical embedded software is described in [4]. An 
experimental case study of performance optimization of 
an embedded multimedia home platform architecture is 
discussed here. This strategy uses concepts of queuing 
networks, and is only suitable for advanced evaluation of 

systems. Such strategies also need practitioners with a 
good knowledge of queuing network theory, for its 
implementation. 
 
In [9], a study is described to gather objective data on 
(Linux-based) application performance on embedded 
hardware. Various metrics of interest are defined and 
measured, as per the functionality of embedded device of 
interest. But this study only measures task-level details 
like the context-switch time and the process memory 
usage, and does not provide a source-code level analysis. 
 
There are some commercial tools available for 
instrumentation-based profiling of application code. 
Rational Quantifier for Linux [10] is a performance 
profiler that identifies the portions of an application that 
slow down the execution speed. It offers the performance 
data in graphical and textual format. Test Quest Pro is 
another automated test solution for embedded systems 
with sophisticated human interfaces.  The vendors claim 
that they specialize in automated test solutions for many 
application and devices in the embedded computing 
industry. But the disadvantages of such commercial tools 
are that they are costly, and they are “closed” (their 
internals cannot be changed as per the user’s needs).  
 
Our paper discusses the dynamic performance evaluation 
and optimization of embedded software stacks using tools 
from the open-source community.  Tools and techniques 
that are needed for supporting the dynamic performance 
measurement, evaluation and optimization, are discussed. 
 
3.  Software for case study: the JUICE 

Software Stack 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: The main components of the JUICE 
software stack 
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We used the JUICE (Joint User Interface and Control 
Engine) software stack, developed internally in Philips, 
for our study. JUICE is a UIMS (user interface 
management system) that has been designed to ease the 
UI (user interface) and application development for 
embedded systems. It implements complex UI 
functionalities like text scrolling, multi-layered menus, 
etc. Figure 1 shows a simplified architectural view of the 
JUICE software stack. Notice how the JUICE  “talks” (via 
JAPI) to various applications, which, in turn talk to the 
middleware subsystem. In other words, JUICE is the 
agent by which the actual application (CD reader, CD 
writer, mobile phone middleware, etc) “talks” to the user. 
Good responsiveness by this stack is essential in 
providing a good end-user experience. This is a prime 
motivation for our selection of JUICE for this 
performance analysis exercise. JUICE contains around 
75K lines of codes in the C language, distributed in 
around 500 C-style functions (250 files). 
 
4. Performance Metrics Identified 
 
Now, we shall discuss the several metrics that we 
ultimately used for the study. These metrics were 
converged upon after consultation with the software 
architects of JUICE. They are: 
 
1. Elapsed time in function call 
2. Fan-in and fan-out of the function 
3. Elapsed time jitter 
 
The total elapsed time in a function call is the amount of 
time elapsed between entering the function and exiting 
from it. This metric is also termed the latency of the 
function call. This is a sum of time needed to execute 
lines of source code that are local to the function (termed 
local elapsed time) and the time to execute other functions 
called by that particular function. A characterization of 
the latencies encountered in the stack is very important, as 
this is a good indication of the responsiveness of the 
software. 
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                      2             4             3                         
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Figure 2: Explanation of the fan-in, fan-out metrics 
used for performance characterization 

 
The fan-in of a function is the number of function calls 
made by other functions to that function, during the 
execution of the software. On the same note, fan-out of a 
function refers to the number of function calls that the 
function makes to other functions (excluding those in the 
system library, like the read() call provided by libc). In 
figure 2, functions f1, f2 and f3 call function f4 two, four 
and three times respectively. Hence, the fan-in of function 
f4 is 2+4+3 = 9. Likewise, if f4 calls f5 and f6 three and 
two times separately, the fan-out of f4 is 3+2 = 5. 
 
The elapsed time jitter of a function call is a measure of 
the variability of the elapsed time in a function. This is 
calculated by finding the standard deviation of the elapsed 
time. This roughly points to the real-time nature of the 
function. This is because functions with real-time 
execution characteristics are expected to have minimal 
variance for their execution time (which is measured by 
the elapsed time parameter). Hence, the standard 
deviation of elapsed time (which is the elapsed time jitter) 
would be minimal. For example, if a function 
decode_data() has elapsed times as 100, 104, 96, 105 
milliseconds for similar data input, the elapsed time jitter 
will be low, which may help us to conclude that the 
function is (more or less) real-time in nature. But, if the 
elapsed times vary widely as 100, 67, 134, 75 
milliseconds for decoding of similar data, the elapsed 
time jitter would be high. This would signal the non-real 
time nature of this function. Thus, a system that uses this 
function will be relatively non real-time in nature. We 
think that the judicious usage of this metric can give a 
good indication of how deterministic the involved 
functions are, which may be very useful in the realization 
of soft real-time multimedia systems. 
 
5.  Collection Methodology 
 
All the performance numbers that were collected were 
with compiler-level instrumentation, and did not involve 
any manual instrumentation. This ensures that the 
collection of performance numbers is simple, easy and 
error-free. We used the extensive instrumentation 
facilities provided by the GCC compiler. The compiler 
supports the insertion of instrumentation to collect: a) the 
call-graph, or a graph representing the sequence of 
functional calls made in the software stack, b) the latency 
information related to the function execution. Tools like 
“gprof” and “function-check” [11] were used to collate 
and tabulate the collected numbers. Figure 3 shows the 
overall methodology that we followed in the evaluation of 
the software. In this figure, the numbered boxes represent 
the stages where the architects were involved. The 
additional tooling that we developed was for stage 3. 
 
Use-case of JUICE: The definition of a good and 
representative use-case is very important while 
conducting performance measurements. The use-case has 
to be simple (so that it is easily repeatable) and yet, it 
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should exercise all the relevant software modules in such 
a way that leads to the manifestation of the maximum 
number of bottlenecks. Keeping these criteria in mind, 
and in consultation with the architects, we identified a 
relevant use-case as scrolling up 30 times through a set of 
menus. 
 
Experimental setup used: The target hardware to run the 
JUICE stack used was the AMD AU 1200 Board [12]. 
The target runs Linux kernel 2.6.11-rc4 (modified by 
MontaVista) on a MIPS core, and the measurements were 
collected on the IDE on-board hard-disk.  The cross 
compiler used was mipsel–linux gcc-3.3.5-glibc-2.3.2.       
 
Using the methodology described above, we were able to 
collect all the metrics listed in the previous section for 
every function in the stack. 
 
Gaps identified in open-source tooling:   
 
We shall briefly talk about the gaps or deficiencies we 
have identified in the tools currently available, during our 
efforts: 
 
• Handling of context switches: Note that the 
instrumentation collects only the time of entry and exit of 
the function. There is a chance that in the time in-
between, while executing in the body of the function, the 
operating system switches to execution of other functions 
(or other processes). The times for these executions would 
also be added to the latency of the function execution, 
which is a significant deficiency if the profiled software is 
heavily multithreaded. 
 
In order to compensate for this deficiency as best as 
possible, we first make sure that the profiled application is 
the only one running on the target and the number of 
external hardware interrupts is as minimal as possible. 
Also, we run the use-case a number of times, and for each 
function, we take the average of all the latency times 
recorded. 
 
• Overhead of instrumentation: We measured the 
overheads (in terms of extra time taken) due to the 
instrumentation introduced by the GCC compiler. It is 
about 4.2 microseconds per function call. This overhead is 
quite small, thought not insignificant. The assumption is 
that functions of interest have much more latencies of 
execution above 1-2 milliseconds. 
 
• Remote logging: The amount of RAM memory in 
embedded systems is very limited. Hence, a provision by 
which one can transfer the collected measurements to a 
host machine would be very useful. Such transfers should 
not be too frequent, or the overhead of such transfers can 
affect the execution of the application. 
 
• Absolute timing information: Currently, there is no 
method by which one can log the absolute times of the 

entry and exit into functions, and other such events. Such 
values would make possible integrated performance 
analysis over measurements from various tools. 

 
 

Figure 3: Major steps of the performance analysis 
methodology used 

 
6. Performance Visualization and Analysis 
 
Performance visualization is important so that one can 
quickly infer and identify bottlenecks from the huge 
amount of performance data collected. Performance 
visualization and analysis is essentially mining the large 
collection of performance measurements for interesting 
aspects of performance (like performance hotspots). We 
developed a tool (which works in tandem with the 
performance analysis tool cgprof [13]), which generates a 
colored call-graph, for performance visualization. This 
call graph indicates the various function calls made during 
the execution of the software stack. One can indicate to 
the tool the parameter on which the coloring of the nodes 
(of each function) is to be based – like the total elapsed 
time in the function, the fan-in of the function, etc. For 
example, let us consider that the fan-in of functions is the 
criteria chosen for the coloring of the call-graph. In this 
case, functions with a low fan-in will be colored green, 
those with a moderate fan-in will be colored yellow, 
functions with a high fan-in will be colored orange, and 
those with the highest amount of fan-in will be colored 
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red. This tool was very helpful in quickly assessing the 
parts of the architecture or code that could have lead to 
performance bottlenecks.  
 
A part of the output of this tool when run on JUICE can 
be seen in figure 4 (coloring is based on fan-in of 
functions).  This call-graph points to the fact that function 
“SliderCreate” (seen as a red, or darkest, node) is the most 
used of all functions, as it services the maximum number 
of function calls 
 
 Analysis of collected measurements: In section 4, the 
various performance metrics that were used for 
characterization of the software stack were outlined. Also, 
we have discussed the use-case that was employed to 
exercise the stack, during the collection of these 
measurements. Now, some sample inferences made from 
the collected data would be presented. This would give a 
flavor of the performance analysis possible on the 
collected data. 
 

 
Figure 4: Screenshot from the performance 

visualization tool developed 
 
In figures 5-8, we have shown a few top functions, as per 
some performance metrics. The values of the metric for 
these functions are plotted on the y-axis (this is similar for 
the other graphs). Such plots sometimes point us to the 
few functions have high values of these metrics, and these 
are prime candidates for performance optimization. 
 
In figure 5, we have shown the top five functions as per 
the metric “total elapsed time”. This metric quantifies 
which part of the code the platform spends most of its 
time (executing). From this analysis, it has been found 
that the “draw” routines and the “timer events” routines of 
JUICE take up much of the CPU time. 
 
Analysis of the fan-in of various functions (see figure 6) 
found that the set of functions concerned with resource-
allocation and platform-interaction are being used 
heavily.  Hence, these are prime candidates for any 
performance optimization effort. 
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Figure 5: Functions with the highest total elapsed time 
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Figure 6: Top 5 heavily called functions 
 
In Figure 7, we have depicted the top functions as per the 
metric: local elapsed time per call. Recall that this metric 
points to the most “heavy” functions. From the results that 
we have measured, and also in consultation with the 
software architects, it has been concluded that various 
“platform” and the “graphics” components seem to 
dominate here. These are parts that interact with the lower 
layers (hardware, etc), and hence it points to the fact that 
either optimization is needed in the hardware, or in the 
lower levels of the stack. 
 
In Figure 8, the functions having the highest “elapsed 
time jitter” is shown. From this, we have inferred the 
(relatively) non real-time behavior of the graphics 
components and initialization routines. The architects 
confirmed our inferences and this points to the usefulness 
of this metric in bringing out non real-time functions. 
 
As stated above, the inferences presented here are just to 
give a flavor of what can be read from the collection of 
measurements. But, the full set of measurements was very 
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useful to the architects (with a good knowledge of the 
functionality of each part of the code) to get some good 
insights into the dynamics of the stack. Also, we were 
able to generate color-coded call-graphs for various parts 
of the JUICE software stack (similar to figure 4), which 
were also useful for further analysis efforts. 
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Figure 7: Functions with the maximum local elapsed 
time 
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Figure 8: Functions with high elapsed time jitter 
 
7.   Conclusion and Future Work 
 
This paper outlines a methodology for the performance 
analysis of a software stack running on an embedded 
Linux platform. In the description of the methodology, the 
relevant open-source tools and methods by which this 
may be done are outlined. Various metrics for capturing 
the dynamic behavior of the software are discussed. From 
the description of the method by which the numbers are 
gathered, one can observe that the overhead of our 
method (in terms of developer and tester effort) is 
minimal, and it is error-free. The study included actual 
measurements on an existing software stack with 
guidance from the concerned architects. But it was done 

in such a fashion as to be generic to any software stack 
(for which the source code is available), which is built 
using the GCC tool chain and which executes in a Linux 
environment. It is hoped that this work would help 
spearhead a performance-optimized proactive design 
paradigm for the realization of responsive CE software, 
based on Linux. 
 
There are interesting ways by which our work may be 
extended. Right now, all the performance metrics are 
collected at the functional level. It is possible to extend 
this to the architectural level, taking support from the fact 
that architectural specifications would give the mapping 
of functions to an architectural component. This would 
give effective feedback for improvement of the software 
architecture. Also, various possibilities may be explored 
to overcome the deficiencies described in section 5. 
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