
Jayaraj et al. J Cheminform (2016) 8:12
DOI 10.1186/s13321-016-0124-8

SOFTWARE

GPURFSCREEN: a GPU based virtual
screening tool using random forest classifier
P. B. Jayaraj1*, Mathias K. Ajay1, M. Nufail1, G. Gopakumar1 and U. C. A. Jaleel2

Abstract 

Background:  In-silico methods are an integral part of modern drug discovery paradigm. Virtual screening, an in-silico
method, is used to refine data models and reduce the chemical space on which wet lab experiments need to be
performed. Virtual screening of a ligand data model requires large scale computations, making it a highly time con-
suming task. This process can be speeded up by implementing parallelized algorithms on a Graphical Processing Unit
(GPU).

Results:  Random Forest is a robust classification algorithm that can be employed in the virtual screening. A ligand
based virtual screening tool (GPURFSCREEN) that uses random forests on GPU systems has been proposed and evalu-
ated in this paper. This tool produces optimized results at a lower execution time for large bioassay data sets. The qual-
ity of results produced by our tool on GPU is same as that on a regular serial environment.

Conclusion:  Considering the magnitude of data to be screened, the parallelized virtual screening has a significantly
lower running time at high throughput. The proposed parallel tool outperforms its serial counterpart by successfully
screening billions of molecules in training and prediction phases.

Keywords:  In-silico drug discovery, Virtual screening, Ligand based drug discovery, Random forest classifier,
GPU computing, CUDA

© 2016 Jayaraj et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Conventional drug design relied on in-vitro methods.
In these methods, wet lab experiments are employed
to discover the activity of ligands with a target protein
molecule. Depending on this approach to determine the
activities of a large set of molecules would consume a lot
of time and money. In-silico drug design breaks this bot-
tleneck by using modern computational techniques. In-
silico approach increases the speed and reduces the cost
of drug design. Depending upon the structural knowl-
edge of the ligand and proteins, there are four different
approaches used in in-silico drug discovery. They are
structure based drug design, ligand based drug design,
de-novo design and library design. The most widely used
approaches are structure based drug design and ligand
based drug design [1].

Ligand based drug design works by building a concep-
tual model of the target protein. Ligand based virtual
screening uses this model to evaluate and separate active
molecules for a target protein. This process involves the
application of classification algorithms on the conceptual
model. The model acts as the training data [2, 3] for the
classification algorithms used in virtual screening. These
algorithms are expected to learn the model parameters
of the input training data. After the training phase, these
algorithms are applied on molecules whose activities with
the target protein are unknown. Based on the properties
of the training data, the algorithms will be able to classify
these new molecules as active or inactive. This eliminates
wet lab experiments involving inactive molecules from
being carried out [4]. Hence, this approach drastically
reduces the number of molecules with which the activity
of a target is to be studied.

Implementing virtual screening using sequential com-
puting techniques often fail to produce results within
a reasonable time frame. The complexity of operations

Open Access

*Correspondence: jayarajpb@nitc.ac.in
1 Department of Computer Science and Engineering, National Institute
of Technology Calicut, NITC Campus, Calicut, Kerala 673601, India
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-016-0124-8&domain=pdf

Page 2 of 10Jayaraj et al. J Cheminform (2016) 8:12

exhibited by virtual screening encourages the usage of
parallel computing techniques to tackle them. But, the
installation and maintenance of an infrastructure for paral-
lel computing with a large number of processors, such as
a Multiple Instruction Multiple Data (MIMD) system, is
neither cost effective nor energy efficient. Computing on
Graphical Processing Unit (GPU) offers a large number of
computational cores that are capable of performing float-
ing point computations in parallel. The computation per-
formance obtained by running this algorithm on a GPU is
comparable to that of a CPU cluster [5]. A GPU infrastruc-
ture can be installed and maintained at a comparatively
low cost. Hence, the advantage of using GPU computing
is twofold; it is both cost effective and energy efficient.
Therefore, implementing a parallelized version of virtual
screening using GPU computing is highly desirable.

The aim of virtual screening is to filter inactive mol-
ecules from the active ones and not to misclassify any
active molecules. The success of ligand based drug discov-
ery depends on the effectiveness of the classifier used in
virtual screening. Ideal virtual screening requires a clas-
sifier that could produce no false negatives and a lower
number of false positives. This results a reduction in the
spectrum of wet lab experiments being conducted. This
reduces the cost. The popular classification algorithms
that are widely used for virtual screening are Support Vec-
tor Machines (SVM) [6], Random Forest Classifiers (RFC)
[7, 8] and Navïe Bayes Classifiers [9]. This is because they
have been found useful in many domains of bioinformat-
ics and medicinal chemistry [10–12].

Random forest classifier
Random forest classifiers work by growing a predeter-
mined number of decision trees simultaneously [13].
The internal nodes of a decision tree may contain one
or more values. Each such internal node represents pos-
sible outcomes of the problem given to it. Splitting of
internal nodes is based on maximum information gain
using GINI index. The growth of the tree is restricted
either by pruning or by setting a threshold value on the
splitting criteria. The classification process is as follows.
A test instance is run on all the decision trees grown in
the forest. Each tree’s classification of the test instance
is recorded as a vote. The votes from all trees are aggre-
gated and the test instance is assigned to the class that
receives the maximum vote.

Parallel decision trees
There are many reported works in this area. Some of
them are outlined in this section.

Nuno Amado et al. [14] presents an overview on the
various ideas regarding implementing parallel decision
trees using data parallelism, task parallelism and hybrid
parallelism in their work. They also describe a new par-
allel implementation of the C4.5 decision tree construc-
tion algorithm using breadth first strategy. A method
[15] for implementing the evaluation and training of
decision trees and forests implemented completely on
a GPU (non-CUDA version) was reported in 2009. A
ubiquitous parallel computing approach for construct-
ing a decision tree on GPU is also available [16]. This
work exploits the divide and conquer parallelism in
ID3 at two levels. One at the outer level of building
the tree node by node in a top-down fashion. And the
other at the inner level of sorting data records within
a single node level. Grahn et al. presents a parallel ver-
sion of the Random Forest machine learning algorithm
namely CudaRF [17] which was implemented using the
Compute Unified Device Architecture (CUDA). In this
implementation, one CUDA thread is used to build one
tree in the forest. The forest is constructed on the GPU
using one thread for each decision tree in the random
forest.

The study in [18] compares the effectiveness of Field
Programmable Gate Arrays (FGPAs), multi-core CPUs
and GPUs for accelerating classification using models
generated by Compact Random Forest (CRF) machine
learning classifiers. It was noted that FPGAs provided
the best performance and performance per watt. Multi-
core CPUs with OpenMP based implementation ensured
scalability. GPUs offered the best performance per dollar
and more than twice the performance of CPUs. The issue
with GPUs is that the performance deteriorated with
larger classifiers.

All previous works [15–17] to use GPUs for Random
Forest classification have relied on coarse-grained
task parallelism and have yielded unsatisfactory
results. Their attempts seem to underutilize the avail-
able parallelism of graphics hardware and have under-
gone only cursory evaluations. Liao et al. introduced
CudaTree [19], a GPU Random Forest implementa-
tion which adaptively switches between data and task
parallelism.

Page 3 of 10Jayaraj et al. J Cheminform (2016) 8:12

Implementation
The motivation for the parallelization of the process of
building a random forest stems from the fact that deci-
sion trees in a random forest are built independent of one
another. This results in the faster construction of deci-
sion trees. Thus, deployment of parallelized random for-
est speeds up the ligand classification during the virtual
screening phase.

Figure 1 illustrates the execution flow and communica-
tion between the host and the device for the execution of
the proposed tool.

In GPU based computing, the process of growing each
tree is assigned to a set of cores. The samples and features
of a given tree are determined from the host system. The
decision tree is built level by level on a grid, by assigning
a block to build a level in a tree. The device memory of
the GPU is used to manage the tree data in a grid. Each
grid performs its evaluation independently.

Building a random forest requires growing a certain
number of decision trees. Many decision tree algorithms
are based on recursion. But, the kernels executed on
the GPU do not support recursion [20]. So, the use of
recursion is not feasible in the GPU based Random For-
est algorithm. This necessitates the design of an itera-
tive tree building algorithm. The data and output of each

such decision tree are not interdependent until execu-
tion is completed. Hence, each such decision tree can
be handled as an independent thread in the GPU. There
are other parallel decision tree learning algorithms [19,
21, 22] that work by clubbing data and task parallelism.
This is similar to the approach taken in the proposed
algorithm.

There are two approaches to parallelize the building
phase of a decision tree, namely data parallel depth first
tree construction and fine grained task parallel breadth
first construction [19]. The depth first tree construc-
tion uses the GPU to compute the optimal split point for
a single node of the decision tree. Each CUDA thread
block is responsible for a subset of samples from a single
feature, followed by a parallel evaluation of the optimal
feature split thresholds. In breadth first tree construction,
instead of constructing a single tree node a whole level of
tree nodes is created simultaneously.

In the serial implementation of Random Forest, the
depth first method is adopted to split the nodes based on
selected features. From the GPU perspective, the depth
first tree construction method will become more expen-
sive as the tree grows deeper. This is because of a large
number of kernels created to perform feature split on a
relatively small number of samples. Similarly, the breadth

Fig. 1  CPU–GPU execution control flow in the proposed parallel algorithm

Page 4 of 10Jayaraj et al. J Cheminform (2016) 8:12

first construction is less efficient at the top of a tree, as
the kernels would need to perform task parallel threads
on less number of nodes.

In order to completely utilize the parallelism pro-
vided by the GPU, a hybrid approach is adopted in the
proposed algorithm. The decision tree on GPU is con-
structed, starting from the root node in a depth first
manner. After a certain point, the tree construction
is switched to breadth first approach. This crossover
point determines the efficiency of the GPU implemen-
tation and the effectiveness of the results produced by
the Random Forest. This crossover point can be deter-
mined by setting a threshold on the number of nodes
that is present in the decision tree. Once, the num-
ber of nodes in a decision tree crosses this threshold,
the tree construction strategy is switched from depth
first to breadth first. A very low value of this thresh-
old will result in poor performance of the algorithm
whereas a very large value will make the tree building
slower. The only possible way to create a decision tree
in a depth first manner in the GPU environment is by
using a stack. The breadth first method of tree construc-
tion uses a queue. It is computationally faster to use
the breadth first method for large data on a GPU. So it
is more productive to use this hybrid method for con-
structing decision trees on a GPU.

Determining the breadth first crossover threshold
The instance at which point the size of the sub-tree
is large enough to merit a switch from depth first to
breadth first tree construction is critical. The scikit-learn

[23] serial algorithm uses the depth first method for the
tree construction. In the proposed parallel implementa-
tion, calculating and fixing the crossover threshold deter-
mines the speed of the algorithm. Since the number of
features used in the present implementation is fixed for
the parallelization of a given tree, the techniques derived
by Liao et al. [19] are used here also. The optimal value of
the crossover threshold is derived by varying the number
of samples, features, and classes used in the classification.
The optimal crossover value obtained through regression
technique is:

where n is the number of samples and f is the number
of features considered at each node split. Therefore, the
optimal crossover point is dependent on the number of
features and the number of training samples used in the
training process.

Proposed parallel algorithm
Random forest building on a GPU begins with a parallel-
ized bootstrapping of the input data items on CUDA as
shown in the Algorithm 1. It is then followed by the par-
allel creation of decision trees in depth first manner. GINI
index is used for splitting the data. The childArray is used
as a stack to create nodes as described in the Algorithm
1. After the number of nodes in the decision tree crosses
the threshold, the tree creation switches to breadth first
mode. Here, the childArray works as a queue and creates
a set of nodes level by level as shown in Algorithm 1. The
algorithm terminates by eliminating those nodes that fail
to attain a threshold GINI index value.

3705+ 0.0577 ∗ n+ 21.84 ∗ f

Page 5 of 10Jayaraj et al. J Cheminform (2016) 8:12

Page 6 of 10Jayaraj et al. J Cheminform (2016) 8:12

Random forest prediction run on a GPU is shown in
Algorithm 2. To classify a new instance, it is classified by
all the trees in the forest in parallel. Each tree evaluates
the features for the new instance. The label after pro-
cessing the input is recorded as a vote. The votes from
all trees are combined and the class for which maximum
votes are counted (majority voting) is declared as the
class of the new instance.

Results and discussion
The computational performance and quality of results
obtained from the GPURFSCREEN for ligand based drug
discovery are presented in this section.

Datasets used
Datasets with different numbers of molecules were used
to gain insight into the quality of the result produced by

Table 1  Datasets used

PubChem bioassay
datasets

Number
of molecules

Date of access

AID 1332 1193 22/07/2014

AID 492952 2294 22/07/2014

AID 651616 5569 22/07/2014

AID 2330 36,869 22/07/2014

AID 893 68,532 24/09/2014

AID 778 95,859 22/07/2014

AID 434955 323,578 28/07/2014

AID 2314 2,964,564 10/09/2015

Table 2  Hardware configuration used

Particulars GPU1 GPU2

GPU NVIDIA GeForce GTX 780 TESLA K20

CUDA cores 2304 2496

GPU clock speed 941 MHz 706 MHz

Graphic memory 3072 MB 4800 MB

Memory bandwidth 288.4 GB/S 208 GB/S

Peak performance 4 TFlops 3.52 TFlops

Compute capability 3.5 3.5

CPU Intel Core i7 Xeon 2650

Table 3  Performance of random forest virtual screening
on serial environment

Dataset Recall Precision F-score ROC area Accuracy

AID 1332 0.68 0.5 0.58 0.73 0.89

AID 492952 0.68 0.87 0.76 0.65 0.68

AID 651616 0.77 0.95 0.85 0.49 0.74

AID 2330 0.58 0.37 0.45 0.67 0.93

AID 893 0.73 0.49 0.59 0.74 0.94

AID 778 0.49 0.34 0.40 0.62 0.78

Table 4  Performance of random forest virtual screening
on GPU

Dataset Recall Precision F-score ROC area Accuracy

AID 1332 0.74 0.52 0.61 0.75 0.92

AID 492952 0.73 0.87 0.8 0.66 0.72

AID 651616 0.78 0.93 0.85 0.65 0.74

AID 2330 0.54 0.38 0.45 0.68 0.93

AID 893 0.72 0.49 0.58 0.73 0.94

AID 778 0.48 0.34 0.4 0.62 0.78

Page 7 of 10Jayaraj et al. J Cheminform (2016) 8:12

this GPU version. Training data sets were obtained from
NCBI PubChem [24] bioassay database which was pre-
pared from frozen stocks of Mtb H37Rv obtained from
American Type culture collections. For the screen, ami-
kacin was included in the positive control wells in every
assay plate. The bio-assay SDF file downloaded from
PubChem was supplied as input to the PowerMV/CDK
[25–28] feature extraction tool to generate 2D molecular
descriptors. A total of 179 descriptors were generated for
each dataset of the experiment. The selection of descrip-
tors was based on the criteria that they are sufficient to

characterize the drug-likeness of a compound [4]. These
descriptors fall into three categories. The first eight
descriptors are used mainly to characterize the drug-
likeness of a compound. Another set of twenty-four con-
tinuous descriptors considered are based on a variation
of BCUT descriptors to define a low dimensional chem-
istry space. The last 147 bit-string structural descriptors,
known as Pharmacophore Fingerprints, are based on
bioisosteric principles. The dataset used for training are
shown in Table 1. The dataset for testing is taken from
GDB17 [29], a chemical universal database for unknown
compounds that has been enumerated by Lars Ruddig-
keit et al.

The technical specification of GPU hardware used in
the experimentation can be found in Table 2.

Interpretation
A Random Forest consists of a certain number of deci-
sion trees. Their nodes split data according to randomly
selected features. This offers a better method to split fea-
tures apart from the split in data, thus enabling the clas-
sifier to pick a combination of subtle changes in certain
features of the data.

Tables 3 and 4 show the comparison of serial and GPU
implementation of random forest on the basis of preci-
sion, recall, accuracy, ROC area and F-score on different

Table 5  Depth-bredth threshold crossover analysis for AID2314 training set

Crossover
value

Running
time (s)

Recall Precision F-score Roc area Accuracy

1000 10.53 0.63 0.40 0.49 0.681 0.91

5000 10.75 0.62 0.39 0.48 0.679 0.91

10,000 11.04 0.62 0.39 0.48 0.677 0.90

15,000 10.58 0.62 0.40 0.48 0.681 0.90

20,000 10.42 0.63 0.40 0.49 0.687 0.91

25,000 10.07 0.62 0.39 0.48 0.681 0.90

30,000 10.37 0.62 0.39 0.48 0.681 0.91

40,000 10.73 0.62 0.40 0.48 0.685 0.91

50,000 12.43 0.62 0.39 0.48 0.682 0.91

Table 6  Running time of serial and GPU versions of ran-
dom forest virtual screening for training

Dataset No of
molecules

Time for
(s) serial

Time for (s)
for GPU

AID 1332 1193 0.0689 1.114

AID 492952 2294 0.2095 1.2054

AID 651616 5569 0.6641 1.7984

AID 2330 36,869 4.2428 2.5487

AID 893 68,532 11.5306 3.2746

AID 778 95,859 35.8603 9.9027

AID 434955 323,578 81.323 10.44

AID 2314 330,664 100.57 10.77

Table 7  Running time of serial and GPU versions of random forest virtual screening for classification

* Serial exception error

Dataset No of molecules Date of access Time (s) for serial Time (s) for GPU

Gdb 17–0.5 million 0.5 million 12/11/2014 1.0296 6.5776

Gdb 17–1 million 1 million 12/11/2014 215.379 13.5085

Gdb 17–2 million 2 million 12/11/2014 1516.4383 25.9176

Gdb 17–2.5 million 2.5 million 12/11/2014 * 32.0973

Gdb 17–5 million 5 million 12/11/2014 * 69.4101

Gdb 17–7.5 million 7.5 million 12/11/2014 * 104.1336

Gdb 17–10 million 10 million 12/11/2014 * 129.7067

Page 8 of 10Jayaraj et al. J Cheminform (2016) 8:12

bioassay datasets. It can be concluded that the machine
learning metrics of Random Forest are not degraded
when ported to the GPU. Random Forest Classifier from
scikit-learn [23] was used to develop the serial version of
virtual screening. The GPU version of the virtual screen-
ing was developed in Python using PyCUDA libraries
[30, 31].

Table 5 shows the depth-breadth crossover analysis for
the AID2314 training set, for different values of crossover
point. With the number of descriptors being constant,
the optimal depth-breadth crossover largely depends on
the size of the training data set. Loading small training
data sets would build depth first driven trees while load-
ing large data sets would build breadth first driven trees.
Therefore, depth-breadth crossover was studied over the
range from 1000 to 50,000. AID2314 is a balanced train-
ing set with 37,055 active out of the 296,456 compounds
present in it. It may be noted that performance matrices
do not change through the depth-breadth slide in the tree
construction. The optimal crossover point of AID2314 is
close to 25,000. The running time of AID2314 is the best
in the table. The end user can change the main param-
eters, such as bfs_threshold and no_of_trees_in_the_for-
est in random-forest.py file in the code base for optimal
performance.

Table 6 shows the performance comparison between
the training phase of the serial and that of GPU versions
of RF based virtual screening on different ligand data
models generated from the corresponding bioassay data
in NCBI PubChem. Though there is a visible performance
gain while using GPU, a major boost in performance is
seen in the classification phase. The comparison of run-
ning times of the classification phase is shown in Table 7
(also see Fig. 2). For small input size, the performance

gain was offset by the cost of copying the data to the GPU
memory. The GPU version of random forest guarantees
an increase in execution speed by 2–20 times. The speed
up of the implementation increases with the number of
molecules. The growth rate of execution time correspond-
ing to increasing input size is lower for the proposed par-
allel implementation than the serial version. The proposed
tool can easily take up billions of molecules for classifi-
cation. Due to the difficulty in feature extraction of large
input data, the table size is limited to ten million.

The number of molecules that can be simultaneously
classified in the serial environment is constrained by the
amount of memory available in the machine. It is evident
that this new parallel tool GPURFSCREEN outperforms
the serial versions in terms of the number of molecules
considered for training and classification. This parallel
implementation has successfully trained more than three
hundred thousand molecules on a single batch. This can
be extended to up to one million in a single batch. The
larger the video RAM available on the GPU, greater the
number of molecules that can be trained. It should be
noted that this implementation can take up billions of
molecules for screening, by using the technique of parti-
tioning the data into batches.

As evident from the results, a huge performance gain
is achieved in both training and prediction phases of
the learning algorithm. This contributes to a significant
improvement in virtual screening of ligand based data
models. The performance of the random forest clas-
sifier can be further improved by increasing the num-
ber of decision trees in the ensemble. The performance
of the classifier algorithm improves with an increase in
the number of decision trees steadily up to a point, after
which the performance starts to decline. This optimal

Fig. 2  Classification time comparison: serial versus GPU

Page 9 of 10Jayaraj et al. J Cheminform (2016) 8:12

point of the number of decision trees can be obtained by
observing the error rate. The global minima of error rate
with the change in the number of decision trees may be
taken as the optimal number of decision trees. However,
this number is specific to each ligand data set and cannot
be specified beforehand.

Conclusion
A tool named GPURFSCREEN was developed for virtual
screening process using Random Forest technique that
works on a CUDA based GPU environment. Consid-
ering the large volume of data involved in ligand based
drug design, this parallelized version of virtual screening
is favorable for two significant reasons: reduced running
time and high throughput. The computational perfor-
mance offered by the GPU outperforms a multi-core sys-
tem. Also, the cost of installation, power consumption
and maintenance of a GPU based system are lower com-
pared to other multi-core systems. Thus, the GPU based
virtual screening for ligand based data sets is a viable
alternative for quickly screening large quantities of ligand
data at a comparatively lower cost.

A computational boost of 2–20 folds for Random For-
est training and prediction is achieved on mediocre GPUs
with a moderate number of GPU cores and video RAM.
GPUs with a large number of computational cores and
larger video RAM can run large bioassay data sets with
significantly lower execution time. As a future extension,
the virtual screening of ligand data sets can be further
implemented and tested with other variants of random
forest classifiers that implement balanced decision trees.
The GPU implementation can also be extended to work
with balanced decision trees for classification.

Availability and requirements
Name of tool: GPURFSCREEN
Tool home page: Source code available at http://ccc.
nitc.ac.in/project/GPURFSCREEN
Operating system: Linux Ubuntu 13.10
Programming language: Python
Frame work: CUDA 6.0, PyCUDA.

Authors’ contributions
PBJ, MKA, UCAJ and GG have contributed to the algorithm design and experi-
mental evaluation. MKA along with PBJ have implemented the algorithm.
Nufail M has performed the testing. The manuscript was prepared by PBJ and
GG. All authors read and approved the final manuscript.

Author details
1 Department of Computer Science and Engineering, National Institute
of Technology Calicut, NITC Campus, Calicut, Kerala 673601, India. 2 Center
for Cheminformatics, Open Source Pharma, No. 22, World Trade Centre,
Malleswaram, Bengaluru, Karnataka 560055, India.

Acknowledgements
The authors express their heartfelt gratitude and appreciation to The Open
Source Drug Discovery Consortium and TATA-CSIR for funding the project.

The authors are grateful to the Central Computer Centre, National Institute of
Technology Calicut for providing the CUDA based GPU infrastructure. Authors
would also like to express their sincere thanks to the Department of Computer
Science and Engineering, National Institute of Technology Calicut for its
constant support.

Competing interests
The authors declare that they have no competing interests.

Received: 10 June 2015 Accepted: 16 February 2016

References
	1.	 Ekinsy S, Mestres J, Testa B (2007) In silico pharmacology for drug discov-

ery: methods for virtual ligand screening and profiling. Br J Pharmacol
152:9–20

	2.	 Gertrudes J, Maltarollo V, Silva R, Oliveira P, Honório K, da Silva A (2012)
Machine learning techniques and drug design. Curr Med Chem
19:4289–4297

	3.	 Senanayake U, Prabuddha R, Ragel R (2013) Machine learning based
search space optimisation for drug discovery. Proc IEEE Symp Comput
Intell Bioinform Comput Biol 13:68–75

	4.	 Schierz AC (2009) Virtual screening of bioassay data. J Cheminform
21:1–12

	5.	 Kirk DB, Hwu WW (2009) Programming massively parallel processors: a
hands-on approach, 2nd edn. Morgan Kaufmann Publishers Inc., San
Francisco

	6.	 Burbidge R, Trotter M, Buxton B, Holden S (2001) Drug design by machine
learning: support vector machines for pharmaceutical data analysis.
Comput Chem 26:5–14

	7.	 Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP (2003)
Random forest: a classification and regression tool for compound clas-
sification and QSAR modeling. J Chem Inf Comput Sci 43(6):1947–1958

	8.	 Boulesteix AL, Janitza S, Kruppa J, König IR (2012) Overview of random
forest methodology and practical guidance with emphasis on com-
putational biology and bioinformatics. WIREs Data Min Knowl Discov
2:493–507

	9.	 Alpaydin E (2003) Introduction to machine learning, 2nd edn. MIT Press,
Cambridge

	10.	 Mitchell T (1997) Machine learning, 1st edn. McGraw Hill, New York
	11.	 Hastie T, Tibshirani R, Friedman J (2008) The elements of statistical learn-

ing data mining, inference and prediction statistics, 2nd edn. Springer,
Stanford

	12.	 Chen B, Harrison RF, Papadatos G, Willett P, Wood DJ, Lewell XQ, Gree-
nidge P, Stiefl N (2007) Evaluation of machine-learning methods for
ligand-based virtual screening. J Comput Aided Mol Des 21:53–62

	13.	 Breiman L (2001) Random forests. Mach Learn 45:5–32
	14.	 Amado N, Gama J, Silva F (2001) Parallel implementation of decision tree

learning algorithms. Prog Artif Intell 2258:6–13
	15.	 Sharp T (2008) Implementing decision trees and forests on a GPU. Com-

put Vis ECCV 2008(5305):595–608
	16.	 Nasridinov A, Lee Y, Park YH (2014) Decision tree construction on GPU:

ubiquitous parallel computing approach. Computing 96:403–413
	17.	 Grahn H, Lavesson N, Lapajne M, Slat D (2011) CudaRF: a CUDA-based

implementation of random forests. In: Proceedings of 9th IEEE/ACS inter-
national conference on computer systems and applications (AICCSA), pp
95–101

	18.	 Essen BV, Macaraeg C, Gokhale M, Prenger R (2012) Accelerating a ran-
dom forest classifier: multi-core, GP-GPU, or FPGA? In: IEEE international
symposium on field-programmable custom computing machines vol 12,
pp 232–239

	19.	 Liao Y, Rubinsteyn A, Power R, Li J (2013) Learning random forests on the
GPU. New York University, Department of Computer Science

	20.	 Jenkins J, Arkatkar I, Owens JD, Choudhary A, Samatova NF (2011) Les-
sons learned from exploring the backtracking paradigm on the GPU. In:
Proceedings of 17th parallel processing international conference, Euro-
Par 2011, Bordeaux, France, vol 6853, pp 425–434

http://ccc.nitc.ac.in/project/GPURFSCREEN
http://ccc.nitc.ac.in/project/GPURFSCREEN

Page 10 of 10Jayaraj et al. J Cheminform (2016) 8:12

	21.	 Kufrin R (1997) Decision trees on parallel processors. Mach Intell Pattern
Recognit 20:279–306

	22.	 Srivastava A, Han EH, Kumar V, Singh V (1998) Parallel formulations of
decision-tree classification algorithms. In: Proceedings of 27nd interna-
tional conference on parallel processing, pp 237–244

	23.	 Scikit-learn machine learning library. http://scikit-learn.org/
	24.	 NCBI PubChem. https://pubchem.ncbi.nlm.nih.gov/
	25.	 Chemistry Development Kit. http://cdk.sourceforge.net
	26.	 PowerMv Molecular Viewer. http://nisla05.niss.org/PowerMV/
	27.	 Liu K, Feng J, Brooks A, Young SS (2005) PowerMV: a software environ-

ment for molecular viewing, descriptor generation, data analysis and hit
evaluation. J Chem Inf Model 45(2):515–522

	28.	 Karelson M, Lobanov VS, Katrizky AR (1996) Quantum-chemical descrip-
tors in QSAR/QSPR studies. Br J Pharmacol 9:1027–1041

	29.	 Lars R, van Deursen R, Blum LC, Reymond JL (2012) Enumeration of 166
billion organic small molecules in the chemical universe database GDB-
17. J Chem Inf Model 52:2864–2875

	30.	 Klockner A, Pinto N, Lee Y, Catanzaro B, Ivanov P, Fasih A (2012) PyCUDA
and PyOpenCL: a scripting-based approach to GPU run-time code gen-
eration. Parallel Comput 38:157–174

	31.	 Sanders J, Kandrot E (2011) CUDA by example: an introduction to general
purpose GPU programming, 1st edn. Addison Wesley, Boston

http://scikit-learn.org/
https://pubchem.ncbi.nlm.nih.gov/
http://cdk.sourceforge.net
http://nisla05.niss.org/PowerMV/

	GPURFSCREEN: a GPU based virtual screening tool using random forest classifier
	Abstract
	Background:
	Results:
	Conclusion:

	Background
	Random forest classifier
	Parallel decision trees

	Implementation
	Determining the breadth first crossover threshold

	Proposed parallel algorithm
	Results and discussion
	Datasets used
	Interpretation

	Conclusion
	Availability and requirements
	Authors’ contributions
	References

