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Abstract 

Background:  In-silico methods are an integral part of modern drug discovery paradigm. Virtual screening, an in-silico 
method, is used to refine data models and reduce the chemical space on which wet lab experiments need to be 
performed. Virtual screening of a ligand data model requires large scale computations, making it a highly time con-
suming task. This process can be speeded up by implementing parallelized algorithms on a Graphical Processing Unit 
(GPU).

Results:  Random Forest is a robust classification algorithm that can be employed in the virtual screening. A ligand 
based virtual screening tool (GPURFSCREEN) that uses random forests on GPU systems has been proposed and evalu-
ated in this paper. This tool produces optimized results at a lower execution time for large bioassay data sets. The qual-
ity of results produced by our tool on GPU is same as that on a regular serial environment.

Conclusion:  Considering the magnitude of data to be screened, the parallelized virtual screening has a significantly 
lower running time at high throughput. The proposed parallel tool outperforms its serial counterpart by successfully 
screening billions of molecules in training and prediction phases.

Keywords:  In-silico drug discovery, Virtual screening, Ligand based drug discovery, Random forest classifier,  
GPU computing, CUDA
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Background
Conventional drug design relied on in-vitro methods. 
In these methods, wet lab experiments are employed 
to discover the activity of ligands with a target protein 
molecule. Depending on this approach to determine the 
activities of a large set of molecules would consume a lot 
of time and money. In-silico drug design breaks this bot-
tleneck by using modern computational techniques. In-
silico approach increases the speed and reduces the cost 
of drug design. Depending upon the structural knowl-
edge of the ligand and proteins, there are four different 
approaches used in in-silico drug discovery. They are 
structure based drug design, ligand based drug design, 
de-novo design and library design. The most widely used 
approaches are structure based drug design and ligand 
based drug design [1].

Ligand based drug design works by building a concep-
tual model of the target protein. Ligand based virtual 
screening uses this model to evaluate and separate active 
molecules for a target protein. This process involves the 
application of classification algorithms on the conceptual 
model. The model acts as the training data [2, 3] for the 
classification algorithms used in virtual screening. These 
algorithms are expected to learn the model parameters 
of the input training data. After the training phase, these 
algorithms are applied on molecules whose activities with 
the target protein are unknown. Based on the properties 
of the training data, the algorithms will be able to classify 
these new molecules as active or inactive. This eliminates 
wet lab experiments involving inactive molecules from 
being carried out [4]. Hence, this approach drastically 
reduces the number of molecules with which the activity 
of a target is to be studied.

Implementing virtual screening using sequential com-
puting techniques often fail to produce results within 
a reasonable time frame. The complexity of operations 
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exhibited by virtual screening encourages the usage of 
parallel computing techniques to tackle them. But, the 
installation and maintenance of an infrastructure for paral-
lel computing with a large number of processors, such as 
a Multiple Instruction Multiple Data (MIMD) system, is 
neither cost effective nor energy efficient. Computing on 
Graphical Processing Unit (GPU) offers a large number of 
computational cores that are capable of performing float-
ing point computations in parallel. The computation per-
formance obtained by running this algorithm on a GPU is 
comparable to that of a CPU cluster [5]. A GPU infrastruc-
ture can be installed and maintained at a comparatively 
low cost. Hence, the advantage of using GPU computing 
is twofold; it is both cost effective and energy efficient. 
Therefore, implementing a parallelized version of virtual 
screening using GPU computing is highly desirable.

The aim of virtual screening is to filter inactive mol-
ecules from the active ones and not to misclassify any 
active molecules. The success of ligand based drug discov-
ery depends on the effectiveness of the classifier used in 
virtual screening. Ideal virtual screening requires a clas-
sifier that could produce no false negatives and a lower 
number of false positives. This results a reduction in the 
spectrum of wet lab experiments being conducted. This 
reduces the cost. The popular classification algorithms 
that are widely used for virtual screening are Support Vec-
tor Machines (SVM) [6], Random Forest Classifiers (RFC) 
[7, 8] and Navïe Bayes Classifiers [9]. This is because they 
have been found useful in many domains of bioinformat-
ics and medicinal chemistry [10–12].

Random forest classifier
Random forest classifiers work by growing a predeter-
mined number of decision trees simultaneously [13]. 
The internal nodes of a decision tree may contain one 
or more values. Each such internal node represents pos-
sible outcomes of the problem given to it. Splitting of 
internal nodes is based on maximum information gain 
using GINI index. The growth of the tree is restricted 
either by pruning or by setting a threshold value on the 
splitting criteria. The classification process is as follows. 
A test instance is run on all the decision trees grown in 
the forest. Each tree’s classification of the test instance 
is recorded as a vote. The votes from all trees are aggre-
gated and the test instance is assigned to the class that 
receives the maximum vote.

Parallel decision trees
There are many reported works in this area. Some of 
them are outlined in this section.

Nuno Amado et al. [14] presents an overview on the 
various ideas regarding implementing parallel decision 
trees using data parallelism, task parallelism and hybrid 
parallelism in their work. They also describe a new par-
allel implementation of the C4.5 decision tree construc-
tion algorithm using breadth first strategy. A method 
[15] for implementing the evaluation and training of 
decision trees and forests implemented completely on 
a GPU (non-CUDA version) was reported in 2009. A 
ubiquitous parallel computing approach for construct-
ing a decision tree on GPU is also available [16]. This 
work exploits the divide and conquer parallelism in 
ID3 at two levels. One at the outer level of building 
the tree node by node in a top-down fashion. And the 
other at the inner level of sorting data records within 
a single node level. Grahn et al. presents a parallel ver-
sion of the Random Forest machine learning algorithm 
namely CudaRF [17] which was implemented using the 
Compute Unified Device Architecture (CUDA). In this 
implementation, one CUDA thread is used to build one 
tree in the forest. The forest is constructed on the GPU 
using one thread for each decision tree in the random 
forest.

The study in [18] compares the effectiveness of Field 
Programmable Gate Arrays (FGPAs), multi-core CPUs 
and GPUs for accelerating classification using models 
generated by Compact Random Forest (CRF) machine 
learning classifiers. It was noted that FPGAs provided 
the best performance and performance per watt. Multi-
core CPUs with OpenMP based implementation ensured 
scalability. GPUs offered the best performance per dollar 
and more than twice the performance of CPUs. The issue 
with GPUs is that the performance deteriorated with 
larger classifiers.

All previous works [15–17] to use GPUs for Random 
Forest classification have relied on coarse-grained 
task parallelism and have yielded unsatisfactory 
results. Their attempts seem to underutilize the avail-
able parallelism of graphics hardware and have under-
gone only cursory evaluations. Liao et  al. introduced 
CudaTree [19], a GPU Random Forest implementa-
tion which adaptively switches between data and task 
parallelism.
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Implementation
The motivation for the parallelization of the process of 
building a random forest stems from the fact that deci-
sion trees in a random forest are built independent of one 
another. This results in the faster construction of deci-
sion trees. Thus, deployment of parallelized random for-
est speeds up the ligand classification during the virtual 
screening phase.

Figure 1 illustrates the execution flow and communica-
tion between the host and the device for the execution of 
the proposed tool.

In GPU based computing, the process of growing each 
tree is assigned to a set of cores. The samples and features 
of a given tree are determined from the host system. The 
decision tree is built level by level on a grid, by assigning 
a block to build a level in a tree. The device memory of 
the GPU is used to manage the tree data in a grid. Each 
grid performs its evaluation independently.

Building a random forest requires growing a certain 
number of decision trees. Many decision tree algorithms 
are based on recursion. But, the kernels executed on 
the GPU do not support recursion [20]. So, the use of 
recursion is not feasible in the GPU based Random For-
est algorithm. This necessitates the design of an itera-
tive tree building algorithm. The data and output of each 

such decision tree are not interdependent until execu-
tion is completed. Hence, each such decision tree can 
be handled as an independent thread in the GPU. There 
are other parallel decision tree learning algorithms [19, 
21, 22] that work by clubbing data and task parallelism. 
This is similar to the approach taken in the proposed 
algorithm.

There are two approaches to parallelize the building 
phase of a decision tree, namely data parallel depth first 
tree construction and fine grained task parallel breadth 
first construction [19]. The depth first tree construc-
tion uses the GPU to compute the optimal split point for 
a single node of the decision tree. Each CUDA thread 
block is responsible for a subset of samples from a single 
feature, followed by a parallel evaluation of the optimal 
feature split thresholds. In breadth first tree construction, 
instead of constructing a single tree node a whole level of 
tree nodes is created simultaneously.

In the serial implementation of Random Forest, the 
depth first method is adopted to split the nodes based on 
selected features. From the GPU perspective, the depth 
first tree construction method will become more expen-
sive as the tree grows deeper. This is because of a large 
number of kernels created to perform feature split on a 
relatively small number of samples. Similarly, the breadth 

Fig. 1  CPU–GPU execution control flow in the proposed parallel algorithm
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first construction is less efficient at the top of a tree, as 
the kernels would need to perform task parallel threads 
on less number of nodes.

In order to completely utilize the parallelism pro-
vided by the GPU, a hybrid approach is adopted in the 
proposed algorithm. The decision tree on GPU is con-
structed, starting from the root node in a depth first 
manner. After a certain point, the tree construction 
is switched to breadth first approach. This crossover 
point determines the efficiency of the GPU implemen-
tation and the effectiveness of the results produced by 
the Random Forest. This crossover point can be deter-
mined by setting a threshold on the number of nodes 
that is present in the decision tree. Once, the num-
ber of nodes in a decision tree crosses this threshold, 
the tree construction strategy is switched from depth 
first to breadth first. A very low value of this thresh-
old will result in poor performance of the algorithm 
whereas a very large value will make the tree building 
slower. The only possible way to create a decision tree 
in a depth first manner in the GPU environment is by 
using a stack. The breadth first method of tree construc-
tion uses a queue. It is computationally faster to use 
the breadth first method for large data on a GPU. So it 
is more productive to use this hybrid method for con-
structing decision trees on a GPU.

Determining the breadth first crossover threshold
The instance at which point the size of the sub-tree 
is large enough to merit a switch from depth first to 
breadth first tree construction is critical. The scikit-learn 

[23] serial algorithm uses the depth first method for the 
tree construction. In the proposed parallel implementa-
tion, calculating and fixing the crossover threshold deter-
mines the speed of the algorithm. Since the number of 
features used in the present implementation is fixed for 
the parallelization of a given tree, the techniques derived 
by Liao et al. [19] are used here also. The optimal value of 
the crossover threshold is derived by varying the number 
of samples, features, and classes used in the classification. 
The optimal crossover value obtained through regression 
technique is:

where n is the number of samples and f is the number 
of features considered at each node split. Therefore, the 
optimal crossover point is dependent on the number of 
features and the number of training samples used in the 
training process.

Proposed parallel algorithm
Random forest building on a GPU begins with a parallel-
ized bootstrapping of the input data items on CUDA as 
shown in the Algorithm 1. It is then followed by the par-
allel creation of decision trees in depth first manner. GINI 
index is used for splitting the data. The childArray is used 
as a stack to create nodes as described in the Algorithm 
1. After the number of nodes in the decision tree crosses 
the threshold, the tree creation switches to breadth first 
mode. Here, the childArray works as a queue and creates 
a set of nodes level by level as shown in Algorithm 1. The 
algorithm terminates by eliminating those nodes that fail 
to attain a threshold GINI index value.

3705+ 0.0577 ∗ n+ 21.84 ∗ f
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Random forest prediction run on a GPU is shown in 
Algorithm 2. To classify a new instance, it is classified by 
all the trees in the forest in parallel. Each tree evaluates 
the features for the new instance. The label after pro-
cessing the input is recorded as a vote. The votes from 
all trees are combined and the class for which maximum 
votes are counted (majority voting) is declared as the 
class of the new instance.

Results and discussion
The computational performance and quality of results 
obtained from the GPURFSCREEN for ligand based drug 
discovery are presented in this section.

Datasets used
Datasets with different numbers of molecules were used 
to gain insight into the quality of the result produced by 

Table 1  Datasets used

PubChem bioassay  
datasets

Number  
of molecules

Date of access

AID 1332 1193 22/07/2014

AID 492952 2294 22/07/2014

AID 651616 5569 22/07/2014

AID 2330 36,869 22/07/2014

AID 893 68,532 24/09/2014

AID 778 95,859 22/07/2014

AID 434955 323,578 28/07/2014

AID 2314 2,964,564 10/09/2015

Table 2  Hardware configuration used

Particulars GPU1 GPU2

GPU NVIDIA GeForce GTX 780 TESLA K20

CUDA cores 2304 2496

GPU clock speed 941 MHz 706 MHz

Graphic memory 3072 MB 4800 MB

Memory bandwidth 288.4 GB/S 208 GB/S

Peak performance 4 TFlops 3.52 TFlops

Compute capability 3.5 3.5

CPU Intel Core i7 Xeon 2650

Table 3  Performance of  random forest virtual screening 
on serial environment

Dataset Recall Precision F-score ROC area Accuracy

AID 1332 0.68 0.5 0.58 0.73 0.89

AID 492952 0.68 0.87 0.76 0.65 0.68

AID 651616 0.77 0.95 0.85 0.49 0.74

AID 2330 0.58 0.37 0.45 0.67 0.93

AID 893 0.73 0.49 0.59 0.74 0.94

AID 778 0.49 0.34 0.40 0.62 0.78

Table 4  Performance of  random forest virtual screening 
on GPU

Dataset Recall Precision F-score ROC area Accuracy

AID 1332 0.74 0.52 0.61 0.75 0.92

AID 492952 0.73 0.87 0.8 0.66 0.72

AID 651616 0.78 0.93 0.85 0.65 0.74

AID 2330 0.54 0.38 0.45 0.68 0.93

AID 893 0.72 0.49 0.58 0.73 0.94

AID 778 0.48 0.34 0.4 0.62 0.78
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this GPU version. Training data sets were obtained from 
NCBI PubChem [24] bioassay database which was pre-
pared from frozen stocks of Mtb H37Rv obtained from 
American Type culture collections. For the screen, ami-
kacin was included in the positive control wells in every 
assay plate. The bio-assay SDF file downloaded from 
PubChem was supplied as input to the PowerMV/CDK 
[25–28] feature extraction tool to generate 2D molecular 
descriptors. A total of 179 descriptors were generated for 
each dataset of the experiment. The selection of descrip-
tors was based on the criteria that they are sufficient to 

characterize the drug-likeness of a compound [4]. These 
descriptors fall into three categories. The first eight 
descriptors are used mainly to characterize the drug-
likeness of a compound. Another set of twenty-four con-
tinuous descriptors considered are based on a variation 
of BCUT descriptors to define a low dimensional chem-
istry space. The last 147 bit-string structural descriptors, 
known as Pharmacophore Fingerprints, are based on 
bioisosteric principles. The dataset used for training are 
shown in Table  1. The dataset for testing is taken from 
GDB17 [29], a chemical universal database for unknown 
compounds that has been enumerated by Lars Ruddig-
keit et al.

The technical specification of GPU hardware used in 
the experimentation can be found in Table 2.

Interpretation
A Random Forest consists of a certain number of deci-
sion trees. Their nodes split data according to randomly 
selected features. This offers a better method to split fea-
tures apart from the split in data, thus enabling the clas-
sifier to pick a combination of subtle changes in certain 
features of the data.

Tables 3 and 4 show the comparison of serial and GPU 
implementation of random forest on the basis of preci-
sion, recall, accuracy, ROC area and F-score on different 

Table 5  Depth-bredth threshold crossover analysis for AID2314 training set

Crossover  
value

Running  
time (s)

Recall Precision F-score Roc area Accuracy

1000 10.53 0.63 0.40 0.49 0.681 0.91

5000 10.75 0.62 0.39 0.48 0.679 0.91

10,000 11.04 0.62 0.39 0.48 0.677 0.90

15,000 10.58 0.62 0.40 0.48 0.681 0.90

20,000 10.42 0.63 0.40 0.49 0.687 0.91

25,000 10.07 0.62 0.39 0.48 0.681 0.90

30,000 10.37 0.62 0.39 0.48 0.681 0.91

40,000 10.73 0.62 0.40 0.48 0.685 0.91

50,000 12.43 0.62 0.39 0.48 0.682 0.91

Table 6  Running time of  serial and  GPU versions of  ran-
dom forest virtual screening for training

Dataset No of  
molecules

Time for  
(s) serial

Time for (s) 
for GPU

AID 1332 1193 0.0689 1.114

AID 492952 2294 0.2095 1.2054

AID 651616 5569 0.6641 1.7984

AID 2330 36,869 4.2428 2.5487

AID 893 68,532 11.5306 3.2746

AID 778 95,859 35.8603 9.9027

AID 434955 323,578 81.323 10.44

AID 2314 330,664 100.57 10.77

Table 7  Running time of serial and GPU versions of random forest virtual screening for classification

* Serial exception error

Dataset No of molecules Date of access Time (s) for serial Time (s) for GPU

Gdb 17–0.5 million 0.5 million 12/11/2014 1.0296 6.5776

Gdb 17–1 million 1 million 12/11/2014 215.379 13.5085

Gdb 17–2 million 2 million 12/11/2014 1516.4383 25.9176

Gdb 17–2.5 million 2.5 million 12/11/2014 * 32.0973

Gdb 17–5 million 5 million 12/11/2014 * 69.4101

Gdb 17–7.5 million 7.5 million 12/11/2014 * 104.1336

Gdb 17–10 million 10 million 12/11/2014 * 129.7067
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bioassay datasets. It can be concluded that the machine 
learning metrics of Random Forest are not degraded 
when ported to the GPU. Random Forest Classifier from 
scikit-learn [23] was used to develop the serial version of 
virtual screening. The GPU version of the virtual screen-
ing was developed in Python using PyCUDA libraries 
[30, 31].

Table 5 shows the depth-breadth crossover analysis for 
the AID2314 training set, for different values of crossover 
point. With the number of descriptors being constant, 
the optimal depth-breadth crossover largely depends on 
the size of the training data set. Loading small training 
data sets would build depth first driven trees while load-
ing large data sets would build breadth first driven trees. 
Therefore, depth-breadth crossover was studied over the 
range from 1000 to 50,000. AID2314 is a balanced train-
ing set with 37,055 active out of the 296,456 compounds 
present in it. It may be noted that performance matrices 
do not change through the depth-breadth slide in the tree 
construction. The optimal crossover point of AID2314 is 
close to 25,000. The running time of AID2314 is the best 
in the table. The end user can change the main param-
eters, such as bfs_threshold and no_of_trees_in_the_for-
est in random-forest.py file in the code base for optimal 
performance.

Table  6 shows the performance comparison between 
the training phase of the serial and that of GPU versions 
of RF based virtual screening on different ligand data 
models generated from the corresponding bioassay data 
in NCBI PubChem. Though there is a visible performance 
gain while using GPU, a major boost in performance is 
seen in the classification phase. The comparison of run-
ning times of the classification phase is shown in Table 7 
(also see Fig.  2). For small input size, the performance 

gain was offset by the cost of copying the data to the GPU 
memory. The GPU version of random forest guarantees 
an increase in execution speed by 2–20 times. The speed 
up of the implementation increases with the number of 
molecules. The growth rate of execution time correspond-
ing to increasing input size is lower for the proposed par-
allel implementation than the serial version. The proposed 
tool can easily take up billions of molecules for classifi-
cation. Due to the difficulty in feature extraction of large 
input data, the table size is limited to ten million.

The number of molecules that can be simultaneously 
classified in the serial environment is constrained by the 
amount of memory available in the machine. It is evident 
that this new parallel tool GPURFSCREEN outperforms 
the serial versions in terms of the number of molecules 
considered for training and classification. This parallel 
implementation has successfully trained more than three 
hundred thousand molecules on a single batch. This can 
be extended to up to one million in a single batch. The 
larger the video RAM available on the GPU, greater the 
number of molecules that can be trained. It should be 
noted that this implementation can take up billions of 
molecules for screening, by using the technique of parti-
tioning the data into batches.

As evident from the results, a huge performance gain 
is achieved in both training and prediction phases of 
the learning algorithm. This contributes to a significant 
improvement in virtual screening of ligand based data 
models. The performance of the random forest clas-
sifier can be further improved by increasing the num-
ber of decision trees in the ensemble. The performance 
of the classifier algorithm improves with an increase in 
the number of decision trees steadily up to a point, after 
which the performance starts to decline. This optimal 

Fig. 2  Classification time comparison: serial versus GPU
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point of the number of decision trees can be obtained by 
observing the error rate. The global minima of error rate 
with the change in the number of decision trees may be 
taken as the optimal number of decision trees. However, 
this number is specific to each ligand data set and cannot 
be specified beforehand.

Conclusion
A tool named GPURFSCREEN was developed for virtual 
screening process using Random Forest technique that 
works on a CUDA based GPU environment. Consid-
ering the large volume of data involved in ligand based 
drug design, this parallelized version of virtual screening 
is favorable for two significant reasons: reduced running 
time and high throughput. The computational perfor-
mance offered by the GPU outperforms a multi-core sys-
tem. Also, the cost of installation, power consumption 
and maintenance of a GPU based system are lower com-
pared to other multi-core systems. Thus, the GPU based 
virtual screening for ligand based data sets is a viable 
alternative for quickly screening large quantities of ligand 
data at a comparatively lower cost.

A computational boost of 2–20 folds for Random For-
est training and prediction is achieved on mediocre GPUs 
with a moderate number of GPU cores and video RAM. 
GPUs with a large number of computational cores and 
larger video RAM can run large bioassay data sets with 
significantly lower execution time. As a future extension, 
the virtual screening of ligand data sets can be further 
implemented and tested with other variants of random 
forest classifiers that implement balanced decision trees. 
The GPU implementation can also be extended to work 
with balanced decision trees for classification.

Availability and requirements
Name of tool: GPURFSCREEN
Tool home page: Source code available at http://ccc.
nitc.ac.in/project/GPURFSCREEN
Operating system: Linux Ubuntu 13.10
Programming language: Python
Frame work: CUDA 6.0, PyCUDA.
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