Fast Parallel Arithmetic Coding on GPU
Jayaraj P.B., Ajay Joseph Thomas, Aravind A.N., Mohammed Hashir, K.S. Syam Sankar

Department of Computer Science and Engineering

National Institute of Technology Calicut

Calicut, Kerala, India

jayarajpb@nitc.ac.in, ajayt6@yahoo.com, aravindzmail92@gmail.com, hashirmohammed@yahoo.co.in, syamsankar91@gmail.com
Abstract— A parallel implementation of arithmetic coding is described, and thereby the potential performance improvements that could be gained in execution time over the serial version through the use of Graphics Processing Unit (GPU) processing techniques within the Compute Unified Device Architecture (CUDA) architecture are explored. Our approach parallelizes the frequency-generating phase of arithmetic encoding by dividing the input into blocks and thereby, taking the count in parallel. This will effectively reduce the time it takes to compress large amounts of data while remaining fully compatible with the respective sequential version. Finally we present the promising results obtained for large data compression using this parallel implementation. This paper utilizes an NVIDIA CUDA enabled GPU for testing the parallel implementation.
Keywords—Parallel Programming; CUDA; GPU; Compression
I. Introduction
Making the best use of the expensive resources is crucial in high performance computing. Data compression helps to utilize space limited resources more efficiently. It involves encoding information using fewer bits than the original representation.

Arithmetic coding treats the whole input data stream as a single unit that can be represented by one real number in the interval (0;1). As the input data stream becomes longer, the interval required to represent it becomes smaller and smaller, and the number of bits needed to specify the final interval increases.

As nothing comes free, there are also some tradeoffs on the decision of using compression. One of the main issues is increase in running time. The colossal computational power on the Graphics Processing Unit (GPU) chips has until lately only been utilized to their full capacity in 3D gaming, but lately with the advent of new architectures, it is possible to exploit the computational resources for more general purposes. General purpose GPUs (GPGPU) consists of hundreds of cores that are programmable with NVIDIA’s CUDA (Compute Unified Device Architecture) framework [1]. This framework provides a set of APIs [2] for programmers to exploit the underlying GPU architecture, which is a collection of virtualized SIMD processors [3] and capable of efficiently switching between thousands of threads.

The report is divided into 6 sections: Section 2 states the problem definition. Section 3 gives background for arithmetic coding and GPU architecture. Section 4 describes the parallelism available in the algorithm and our implementation details. Section 5 deals with the performance of our implementation and the results obtained. Conclusions and future scope are described in Section 6. Acknowledgement and References follow.
Motivation towards this work is detailed below.

In today’s World Wide Web, the importance of Big Data (a collection of datasets so large and complex that it becomes difficult to process using on-hand database management tools) is tremendously increasing day by day as more and more websites need to deal with huge amount of data. Also the sizes of data used for entertainment as well as academic purposes are growing at a tremendous rate. As a result the importance of compression of these huge data is increasing correspondingly.

Many compression techniques, like arithmetic encoding, have inherent scopes of parallelism which are still untapped. If parallelized they become ideal candidates for parallel processing architectures.

 Current generation GPUs are multi-core devices with high processing power. The current generation CUDA architecture, code named Fermi, has a maximum of 512 cores [4]. The next generation architecture, Kepler holds up to 1536 cores in a single die [5].
 Also the GPU’s are highly power efficient when compared to multi-core and single-core CPU’s (Central Processing Unit). This enables highly complex and intensive computations on GPU using very little power.
So the GPU architecture has immense potential in the form of massively parallelizable processing power that can be exploited for the purpose of increasing compression speed.

II. Problem Definition
To port data compression techniques used in arithmetic coding to GPGPU by parallelizing parts of existing algorithm which is serial in nature and hence reduce the computational time involved in compressing data.

III. Related Work
In this section, we will discuss about GPU architecture and GPU computing in general (including some related works) and about arithmetic coding.
A. GPU : An accelerator to High Performance Computing
GPUs are placed on graphics boards where they are used to speed up 3D graphics rasterization [6], the task of taking an image described as a series of shapes and converting it into a raster image for output on a video display. The first GPUs were designed as graphics accelerators, supporting only specific fixed-function pipelines. To satisfy the increasing performance demands of the video gaming industry, modern GPUs have become very advanced computational device, using a large set of stream processors to render multiple pixels in parallel. The fixed function units became programmable and were named as shader cores. The addition of programmable stages and higher precision arithmetic to the rendering pipelines enabled software programmers to use the chip for the processing of non-graphic data.
Nowadays, GPUs are considered as massively parallel computing units and they can offer high parallelism and memory bandwidth in a low cost, energy efficient platform [7]. GPUs employ signiﬁcant multithreading. This is achieved by a set of multiprocessors, called streaming multiprocessors (SMs), that exist in GPU architecture. Each SM contains a set of SIMD processing units called streaming processors (SPs). The threads, which are the basic execution engines, are grouped into warps for execution on a multiprocessor. A warp is a sub-division used in the hardware implementation to coalesce memory access and instruction dispatch.
CUDA is a parallel computing platform and programming model invented by NVIDIA. It enables dramatic increases in computing performance by harnessing the power of the graphics processing unit (GPU). CUDA provides a parallel programming model and instruction set architecture which makes the programming of GPU easier. NVIDIA CUDA threads make the last level in a hierarchy which consists of blocks and grids. Block is a 3-D structure of threads which can contain a maximum of 512 threads. Grid is a 2-D structure of blocks. Each grid comprises of a maximum of 65532 blocks. At runtime, these CUDA abstractions are mapped into hardware threads and then to warps for scheduling. In addition to this, NVIDIA GPU architectures implement a hierarchy of memory types; including global, constant, texture, shared memory and registers. Global memory, texture memory, and constant memory are accessible by all threads. Threads in the same thread block share the shared memory, and each thread has private registers and local memory. Because of the limited amount of shared resources (register and shared memory usages per thread block), it can be a limiting factor for CUDA programs and needs special attention to fully utilize the GPUs [8]. In short, the GPU groups and schedules threads in warps, while CUDA offers a higher level view of grids & blocks. Using grids and blocks, a programmer can map the subdivision inherent in the problem domain in a convenient way.
The processor and the GPU together constitute a heterogeneous architecture. The codes that are executed in CPU and GPU are called host and device codes respectively. The part with little or no data parallelism is implemented in host code and it runs on the CPU. The parts that exhibit rich amounts of data parallelism are implemented in the device code and are executed on the GPU. Kernel is a special function that is called from the host and executed on the device. Before and after the kernel execution, needs to be explicitly copied to the GPU memory. There is an API with special function calls to communicate between the separate address spaces of host CPU and the GPU device. CUDA allows developers to use C and C++ as high-level programming languages with the benefit of ease of programming in a familiar environment rather than learning a new programming language [9]. This gives a motivation for porting already written programs in CUDA with minimal extensions. The only difficulty is that GPU computing requires the development of specific algorithms, since the programming paradigm substantially differs from the traditional CPU-based computing.
Within the current series of NVIDIA CUDA family called Fermi, there are up to 512 CUDA cores, which are organized in 16 streaming multiprocessors of 32 cores in each GPU. This enhanced multithreaded platform gives many opportunities for parallel computation. The following paragraph details some existing works harnessing the power of the GPU.
Accelerating advanced MRI reconstruction on GPU [10] describes the acceleration of an image reconstruction algorithm on NVIDIA’s Quadro FX 5600. The reconstruction of a 3D image with 1283 voxels achieves up to 180 GFLOPS and requires just over a minute on the Quadro, while reconstruction on a quad-core CPU is twenty-one times slower. PacketShader [11] is a high-performance software router framework for general packet processing with Graphics Processing Unit (GPU) acceleration. PacketShader exploits the massively-parallel processing power of GPU to address the CPU bottleneck in current software routers. Combined with a high-performance packet I/O engine, PacketShader outperforms existing software routers by more than a factor of four.
B. Arithmetic Coding

Arithmetic coding is a form of entropy encoding used in lossless data compression. When a string is converted to arithmetic encoding, this algorithm ensures that the more frequently used characters will be stored with fewer bits and less frequently occurring characters will be stored with more bits, thus resulting in fewer bits used in total [12].

The central concept behind arithmetic coding with integer arithmetic is that given a large-enough range of integers, and frequency estimates for the input stream symbols, the initial range can be divided into sub-ranges whose sizes are proportional to the probability of the symbol they represent [13]. Symbols are encoded by reducing the current range of the coder to the sub-range that corresponds to the symbol to be encoded. Finally, after all the symbols of the input data stream have been encoded, transmitting the information on the final sub-range is enough for completely accurate reconstruction of the input data stream at the decoder.

The fundamental sub-range computation equations are given recursively as:

lown = lown-1 + (highn-1 — lown-1)Pl(xn)
(1)

highn = lown-1 + (highn-1 — lown-1)Ph(xn)
(2)
where Pl and Ph are the lower and higher cumulative probabilities of a given symbol (or cumulative frequencies) respectively, and low and high represent the sub-range boundaries after encoding of the nth symbol from the input data stream.

The decoding process must start with an encoded value representing a string. By definition, the encoded value lies within the lower and upper probability range bounds of the string it represents. Since the encoding process keeps restricting ranges (without shifting), the initial value also falls within the range of the first encoded symbol. Successive encoded symbols may be identified by removing the scaling applied by the known symbol. To do this, subtract out the lower probability range bound of the known symbol, and multiply by the size of the symbols' range.

IV. Proposed Method

Arithmetic Coding can be described as:

1) Input is an alphabet with symbols S0, S1, ..., Sn, where each symbol has a probability of occurrence of p0, p1, ..., pn such that ∑pi = 1.

2) The probabilities, pi, for each symbol are generated. Since ∑pi = 1, each probability, pi, can be represented as a unique non-overlapping range of values between 0 and 1.

3) low0 = 0

high0 = 1

for i from 1 to n
 lowi = lowi-1 + (highi-1 — lowi-1)Pl(xi)

 highi = lowi-1 + (highi-1 — lowi-1)Ph(xi)

end loop
return lowi and highi
We attempt to parallelize the calculation of the frequency of characters, described in step 2 above. The steps involved are:

1) The input data is divided into chunks and distributed among blocks. This stage involves copying of data from system memory (RAM) to device memory (GPU RAM), which is a costly operation.
2) Each block then splits this chunk into even smaller pieces. Each thread in the thread block receives a small portion of the input data.

3) Each and every thread increments the count of the respective character in the global array.
 Also this implementation of arithmetic coding will be compared in terms of compression ratio (compressed file size/original file size) with one of the other very popular encoding techniques (Huffman coding [14]) which is used in a lot of compression algorithms.
The following methodology has been resorted to achieve the proposed strategy:

•
Studied about the CUDA platform

Ported matrix multiplication algorithm to CUDA to study and analyze about this architecture.

•
Analyzed scope of various parallelizable encoding techniques

•
Studied about arithmetic coding and its scope for parallelization

•
Parallelized arithmetic coding by distributing the workload to different GPU threads by modifying serial version [15]
•
Analyzed the execution times of serial and parallel versions of arithmetic coding using various datasets of different sizes

•
Compared compression ratio of above implemented algorithm with an implementation of Huffman coding [16]
The code details of our implementation can be accessed through the following link.
http://andromeda.nitc.ac.in/jayarajpb/link2.php
V. Performance
A. Data Set

The data used for performance testing are randomly generated text files of varying sizes. The text files are randomly populated with ASCII characters. The files generated are of sizes 10.2 MB and its multiples up to 600.4 MB (when the hardware limit is reached). Multiple files were generated at each of these sizes. The compression ratio and compression time will vary according to the input chosen and hence averages of results were taken for the final analysis.

B. Hardware

The platform we worked on is an Intel i3 3.1 GHz processor with 8GB RAM and an NVIDIA GeForce GTX 550 Ti-based GPU on Linux Ubuntu 11.10 OS. The GeForce 550 Ti has 192 CUDA cores, 1 GB of global memory, and supports a maximum throughput of 98.4 GB/sec.

C. Results
Table 1 shows the mean computation times of the seven different input datasets of varying sizes for the serial and parallel versions of arithmetic coding. Fig. 1 graphically shows the above mentioned results. For small and medium sized data the serial version performs better. This is mainly because the performance gain introduced by the parallelism is dominated by the delay of copying data to the GPU memory. The better performance of the parallel version is evident for large data.
Table 1: Time taken by serial and parallel versions of Arithmetic Coding

	Size (in MB)
	Serial version (in s)
	Parallel version (in s)

	10.2
	1.049
	1.284

	20.4
	2.096
	2.404

	40.8
	4.191
	4.652

	81.6
	8.393
	9.065

	163.2
	16.784
	17.659

	326.4
	33.567
	34.399

	600.4
	61.125
	60.423

[image: image1.png]Execution time (s)

70

10.2

204

40.8 816 163.2 326.4 600.4

Size of file (MB)

M Serial Version

M Parallel Version

Fig. 1: Comparison of execution times in both versions of arithmetic coding

Table 2 shows the results of table 1 as multiples of initial values (for input data size up to 326.4 MB). Fig. 2 represents this information graphically. Here, when size is doubled, the execution time for the serial version also gets almost doubled, whereas the execution time for the parallel version becomes considerably less than twice. This shows that the execution time of the parallel version grows much slower than that of the serial version. This trend ultimately results in the parallel version executing faster than the serial version for input data of size 600.4 MB. Unfortunately we could not test with larger data sets because of hardware limitations (insufficient GPU RAM). Nevertheless these results are promising for large data compression.
Table 2: Growth of execution times with growth in input file size
	Size (x 10.2 MB)
	Serial version (x 1.049 s)
	Parallel version (x 1.284 s)

	1
	1
	1

	2
	1.998
	1.872

	4
	3.995
	3.623

	8
	8.001
	7.059

	16
	16.000
	13.753

	32
	31.999
	26.791

[image: image2.png]Time (s)

35

30

25

20

15

10

10

15 20

Size (multiple of 10.2 MB)

25

30

35

——Serial Version
—#—Pparallel version

Fig. 2: Growth of execution time in both versions of arithmetic coding

Fig. 3 shows the comparison of compression ratios of arithmetic coding (0.58) and Huffman coding (0.75). The same dataset was used for this comparison and it is evident that arithmetic coding achieves better compression ratio than Huffman coding.

[image: image3.png]Compression Ratio

0.9
0.8
0.7
0.6
0.5
0.4
03
0.2
0.1

10.2 204 40.8 81.6 163.2 326.4 600.4

Size of file (MB)

M Arithmetic Coding
W Huffman Coding

Fig. 3: Comparison of compression ratios of arithmetic coding and Huffman coding

VI. conclusion

We have presented a design and implementation of parallel version of arithmetic coding on CUDA platform. We were able to successfully introduce parallelism in the arithmetic coding algorithm in the frequency estimation stage. For small to medium input sizes, the performance gain was offset by the cost of the copying data to GPU memory. The rate of growth of execution time corresponding to increasing input sizes is lower for our parallel implementation relative to the serial version of arithmetic coding. So in the case of large inputs, the parallel version performs better.
The results obtained also show that arithmetic coding gives a better compression ratio compared to Huffman coding for text data.

With enhanced GPU RAM capacity, it will be possible to compress files of larger sizes, thereby resulting in better execution times. Also, with advancements in CUDA and GPU technology, the cost of the copying operation to GPU memory would decrease considerably enabling further improvement in execution time.

Acknowledgment
We thank the Computer Science and Engineering Department of NIT – Calicut for all the support we got towards the successful completion of this work.
References

[1] D.B. Kirk, W. mei, and W. Hwu, Programming Massively Parallel Processors: A Hands-on Approach, Morgan Kaufman, 2010.

[2] J. Sanders, E Kandrot, CUDA by example: An introduction to General Purpose GPU programming, Addison Wesley, 2011.

[3] http://gpgpu.org/.

[4] NVIDIA Corporation, NVIDIA’s Next Generation CUDATM Compute Architecture: FermiTM Whitepaper, 2010, http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIAFermiComputeArchitectureWhitepaper.pdf.

[5] NVIDIA Corporation, NVIDIA’s Next Generation CUDATM Compute Architecture: KeplerTM GK110 Whitepaper, 2012, http://www.nvidia.in/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf.
[6] Chris McClanahan, "History and Evolution of GPU Architecture", 2011, http://mcclanahoochie.com/blog/wp-content/uploads/2011/03/gpu-hist-paper.pdf.
[7] M. Boyer, D. Tarjan, S. Acton, K. Skadron, Accelerating leukocyte tracking using CUDA: A case study in leveraging many core coprocessors in IEEE International Symposium on May 2009, 1-12.

[8] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, W. W. Hwu, Optimization principles and application performance evaluation of a multithreaded GPU using CUDA in Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice of parallel programming, New York, USA, 73-82.
[9] NVIDIA Corporation, NVIDIA CUDA C Programming Guide version 4.2, http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.
[10] S.S. Stone a, J.P. Haldar , S.C. Tsao, W.m.W. Hwua, B.P. Sutton c Z.-P. Liang "Accelerating advanced MRI reconstructions on GPUsI", J. Parallel Distrib. Comput. 68 (2008), 1307–1318.

[11] Sangjin Han, Keon Jang, KyoungSoo Park, Sue Moon, "PacketShader: a GPU-Accelerated Software Router", SIGCOMM’10, 2010.
[12] E. Bodden, Arithmetic coding revealed - a guided tour from theory to praxis, Technical Report 2007-5, Sable (2007)

[13] P.G. Howard, J.S. Vitter, Arithmetic coding for data compression, Technical report DUKE-TR-1994-09 (1994)
[14] http://scanftree.com/Data_Structure/huffman-code.
[15] Michael Dipperstein, Arithmetic Coding v. 0.4, 2 April 2004 http://michael.dipperstein.com/arithmetic/arcode-0.4.zip.
[16] Shailesh Ghimire, Huffman Compression v. 1,11 Sept 2011 https://code.google.com/p/huffman-textfile-compression/source/browse/main.c.
