
Rent or Self-execute?
Resource Management Strategies for Cloud Providers

Aviral Nigam
National Institute of Technology

Calicut, India 673601
Email: aviral@nitc.ac.in

Snehal Chauhan
National Institute of Technology

Calicut, India 673601
Email: snehal bcs09@nitc.ac.in

Varsha Murali
National Institute of Technology

Calicut, India 673601
Email: varshamurali bcs09@nitc.ac.in

Abstract—As Cloud Computing is an emerging field, many
improvements are being proposed to provide users with better
services and facilities. This paper deals with the illusion of infinite
resource availability on demand, one of the new aspect in Cloud
Computing. A new approach has been discussed here to continue
providing this illusion. This work provides an efficient way for
the cloud provider to decide on his strategies to execute a job
i.e., whether to use his own services to execute (self-execute)
or to pay rent to other cloud providers. A utility function has
been formulated that considers the factors related to resource
requirement, execution time and waiting probability. Further, a
combination of forecasting models and game theoretic approaches
have been proposed to identify the best strategy based on the
values from this utility function. The design considers both the
previous as well as current demand to decide on the provider’s
strategy so as to make the results more accurate. The results
obtained show an almost equal distribution of Rent and Self-
execute strategies.

Keywords—Cloud Computing, Forecasting, Game Theory,
Cloud Provider, Rent/Self-execute Strategy, Utility

I. INTRODUCTION

Cloud Computing is a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of con-
figurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider
interaction [1]. Load Balancing is the process of distributing
the load among various nodes of a distributed system when it
becomes difficult to predict the number of requests that will
be issued to a server. It considers factors like execution time,
resource availability and requirement among others to improve
job response time, throughput, etc. In order to provide better
service-level agreements, the cloud provider has to provide
such improvements to the user.

Quality of Service (QoS) is the resource reservation control
mechanism in place to guarantee a certain level of performance
and availability of a service. It provides a level of assurance
that the resource requirements of an application are strictly
supported [2]. It is possible that the resource requirement
of a user may not be supported by the cloud provider. In
such scenarios, the cloud provider has to provide a means
of executing the user’s load. The provider has to decide the
appropriate strategy (refer Fig. 1) such that the user’s needs are
met. One of the most interesting aspects in Cloud Computing
is the feeling of availability of ‘infinite’ computing resources
that the cloud provider tries to distribute to the user in an

elastic way [3]. The user does not fully realize the internal
allocations while demanding for more resources.

Fig. 1: A Rent or Self-execute Model for Cloud Provider

For this infinite demand of the user to be met, the cloud
provider has to find ways to do it without incurring any
loss. One of the approaches to do it is to calculate the
number of times the provider does not have the capacity to
execute the load and based on that draw up an agreement
with another provider to execute the load. This calculation
can be predicted from past data through forecasting and by
game theory (to include the current data also). The method
of standard deviation can help in deciding the strategy of the
cloud provider.

II. LITERATURE SURVEY

One of the aspects of Cloud Computing is the illusion
of infinite computing resources available on demand, thereby
eliminating the need for Cloud Computing users to plan far
ahead for provisioning. For this, realizing the economies of
scale afforded by statistical multiplexing and bulk purchas-
ing requires the construction of extremely large data-centers.
Building, provisioning, and launching such a facility is a



hundred-million-dollar undertaking [4].

A system composed of a virtual network of virtual machines
capable of live migration across multi-domain physical infras-
tructure have been constructed. By using dynamic availability
of infrastructure resources and dynamic application demand,
a virtual computation environment is able to automatically
relocate itself across the infrastructure and scale its resources
[5]. Thus the QoS improvements can be met using this virtual
machine setup. Depending on the type of application, the
generated workload can be a highly varying process that
turns difficult to find an acceptable trade-off between an
expensive over-provisioning able to anticipate peak loads and
a sub performing resource allocation that does not mobilize
enough resources. These properties can be leveraged to derive
a probabilistic assumption on the mean workload of the system
at different time resolutions [6].

There are many proposals that dynamically manage Virtual
Machines by optimizing some objective function such as min-
imizing cost function, cost performance function and meeting
QoS objectives. The objective function is defined as Utility
property which is selected based on measures of response time,
number of QoS, targets met and profit etc. [5]. This Utility
property can then be adjusted to include factors of individual
importance. They have been modified to meet needs according
to current demand. But they may prove complex and may
not work in a practical virtualization cloud system with real
workload. These approaches work best for stationary demands
and may not give optimal solution for dynamic resource
requirements. The utility property can be modified to include
dynamic demands and allocation. This requires formulating the
appropriate utility property that captures these demands. This
paper tries to capture some of the factors of load balancing
into a utility function [see equation (1)] as explained below.

III. DESIGN

The process of load balancing considers factors like execu-
tion time, the number of resources required and the probability
of having to wait for the resource at the server among others.
Using these factors, a utility function is formulated:

Utility =
e

tavg
+n1−p

s
(1)

where e is the execution time of the current job, tavg is the
moving average of the execution time of all the previous
jobs in the batch, n is the number of resources required to
execute the batch, p is the waiting probability and s is the
batch size. Taking into account resource utilization, execution
time and throughput, this function gives each of these factors
a non-trivial weightage.

The term e
tavg

deals with execution time and average
throughput. n1−p deals with resource allocation. If the
number of resources required is less, then the waiting
probability will be less and therefore they should never
become trivial, hence n is raised to a factor of 1− p.

This function is additive because all the factors are given a
non-trivial weightage whereby all of them are included in
computing the utility value. In order to maintain uniformity
between the batches, a division by batch size has been

included in the function.

For each batch, a forecasting method is applied with the
existing utility values to compute the utility value for the
next batch. The forecasting methods can depend on the trend
present in these input utility data. If no trend is present,
exponential smoothing can be applied and the presence of
trend will shift the forecasting to Holt’s Method.

/∗Choosing Forecasting Method∗/

if trend == true then
method← Holt′s Method

else
method← Exponential Smoothing

end if

The computed forecasted value is compared with the actual
utility value of the batch (an average of the utility values
of all the jobs in the batch) to understand the computing
facilities required to execute the batch.

/∗Choosing Batch Strategy by Forecasting∗/

if forecast value < average utility then
strategy ← Rent

else
strategy ← Self − execute

end if

When the value of forecast is obtained, the system prepares
itself to provide computing facilities atmost equal to that of
the utility value forecasted. So if the forecasted value is less
than the actual utility value, then the system was not prepared
to handle that load as it forecasted only lesser facilities .
So the cloud owner pays rent to an external cloud who can
provide the necessary computing facilities for executing the
batch. If found otherwise, the cloud owner will execute the
batch with the facility he owns.

This approach only uses past information to decide the
strategy even when the present data are made available. A
sudden deviation in the batch load may not be captured
in such a case and may result in incorrect forecasting and
strategy results. So a game-theoretic approach, where the
current data is also considered while deciding the strategy, is
adopted.

In this approach, two utility values are calculated for two
waiting probabilities, p1 and p2 where 0 <= p1 <= 0.5 and
0.5 < p2 <= 1. The strategies of Rent and Self-execute then
randomly take the u1 and u2 values:

/∗On Random Coin− toss∗/

if Coin− toss == 1 then
Rent← u1
Self − execute← u2

else
Self − execute← u1
Rent← u2

end if



The above random strategy can be interchanged without much
effect. So, for each batch of jobs a matrix MsX 2, where
s is the batch size, is created with utility values for Rent
and Self-execute strategies. The maximum utility values for
each strategy is then selected alongwith its corresponding rows
resulting in a matrix M ′2X 2. A method of mixed strategy
calculation is applied to M ′ which chooses the strategy with
the higher probability p.

The strategy given by forecasting and game theory may be
different. In such a case, further decision has to be taken as
to which strategy should be adopted. The method of standard
deviation in each conflicting batch is applied about the points:

µ1 = forecasted value /∗Forecast approach∗/
µ2 = equilibrium value /∗Game Theory approach∗/

Where equilibrium value is obtained as:

p ∗ utilityp + (1− p) ∗ utility1−p
The final strategy is given by the approach that has minimum
standard deviation.

/∗In case of Conflict of Strategies∗/

σ1 ← Standard Deviation about µ1

σ2 ← Standard Deviation about µ2

if σ1 < σ2 then
strategy ← strategyForecasting

else
strategy ← strategyGameTheory

end if

IV. IMPLEMENTATION

A batch of jobs (maximum 25 jobs per batch) having
randomly generated values for execution time, number of
resources required and waiting probability is initially created
and 1000 such batches are initialized. The first seven batches
are made to randomly adopt a strategy because of the window
size taken in the approach.

The utility value for each job is calculated using the utility
function and the average of these values are obtained for a
batch. While applying a forecasting model, if a linear trend
is observed in the average utility values for a window size
of 7 consecutive batches, Holt’s method is used. Otherwise
exponential smoothing is used to calculate the forecast value
for the next batch of jobs. A relaxation of 3 values has been
provided in the forecasting model so that an almost equal
distribution of Holt’s and exponential model is observed. This
deviation was experimentally chosen. The smoothing constants
for the models were taken as α = 0.2 and β = 0.1 to maintain
stability of the forecast. The forecast value obtained from this
approach is then used to decide the strategy using forecast by
the algorithm for choosing batch strategy by forecasting.

Further for game theory, the utility values for p1 and p2 prob-
abilities are calculated for each batch and then by the selection
process a 2X 2 matrix is obtained which undergoes the mixed
strategy calculation. The strategy with higher probability is the
strategy using game theory.

From the above two approaches, two strategies are obtained.

Whenever there is a conflict in the strategies obtained from
the approaches, the strategy which gives minimum standard
deviation with its respective means is finally chosen.

For example, consider that the cloud provider receives the ith
batch, then the forecast is done for the (i+ 1)th batch utility
value which is the average of the utility values of all the jobs
in the batch. If a trend is observed in these average values of
(i− 7)th batch to ith batch, then the forecast for the (i+1)th

batch utility is obtained using Holt’s Method; else exponential
smoothing is adopted. Then when the (i+1)th batch is received
by the provider, the average actual utility of the (i + 1)th

batch is computed and is compared with the forecasted value
previously obtained. Based on the algorithm for choosing batch
strategy by forecasting, either Rent or Self-execute strategy is
chosen. At the same (i + 1)th batch, two utility values are
then calculated for each job in this batch using p1 and p2
probabilities and a matrix is constructed. The selection process
is then applied to this matrix to obtain the 2X 2 matrix and
finally the mixed strategy calculation is done to decide the Rent
or Self-execute strategy using game theory. Thus the strategies
for the (i+1)th batch is obtained by the two approaches. If the
strategy of Rent is chosen through forecasting and Self-execute
through game theory (or vice versa) for the (i + 1)th batch,
standard deviation method is applied. Then, by the algorithm
stated above on the conflict of strategies, the final strategy to
be adopted by the cloud provider is chosen for the (i + 1)th

batch.

V. RESULTS AND ANALYSIS

During forecasting, the strategy adopted is seen to be
biased towards the Self-execute strategy (refer Fig. 2). The
utility values are observed to lie within the range 1 to 10
for the values generated. So when a sudden increasing trend
in the utility values is seen (observed as a greater slope),
then the next forecasted value will be much higher as it
takes into consideration the difference between the values
while forecasting in a linear trend. This will result in the
Self-execute strategy being chosen frequently. The decreasing
trend phenomenon does not happen frequently as this sudden
decrease cannot be seen from a high value because of the
common range observed. So, however big a decreasing trend
is observed, it still lies within the acceptable range.

Fig. 2: Rent/Self-execute Model for Cloud Provider using Forecasting



An almost equal distribution of strategies of Rent and Self-
execute was observed (refer Fig. 3) with the game theoretic
approach with no strategy overpowering the other. This is
because of the randomness in allocating the utility values to
the strategies while constructing the matrix. This results in an
unbiased evaluation of the matrix which gives an almost equal
weightage to both the strategies.

Fig. 3: Rent/Self-execute Strategy Distribution using Game Theory

The overall strategy also shows an almost equal distribution
after resolving the conflicts (refer Fig. 4). In case of conflicts,
the final strategy obtained from the standard deviation method
considers both forecasting and game theoretic approaches. In
this case, the utility values of the jobs in the current batch
is compared with the utility values obtained from forecasting
and game theory. This method finally selects the strategy that
does not deviate much from the expected value obtained from
the above two approaches, thus making it easier for the cloud
provider to provide the services required to execute the batch
without deviating much from the services he already provides.

Fig. 4: Rent/Self-execute Strategy Distribution after resolving any conflicts

The results obtained above are with respect to the randomly
generated data inputs. For the input values generated, the
corresponding range and output values have been mentioned.
The equal distribution shows that the design proposed is not
biased towards any particular strategy and the results are based
purely on the values obtained from the utility function.

VI. CONCLUSION

In this paper, we have discussed one approach of how the
illusion of infinite resources in Cloud Computing can be further
optimized without incurring any loss for the cloud provider.
QoS can be improved and thus it provides the user with better
facilities. The cloud provider can decide whether he wants
to pay rent for executing the load and prevent disappointing
the user or just execute only what is possible. Forecasting
followed by game theory gives a better approach of including
the data available till the current point and will help in correctly
deciding the strategy. From these results, a cloud provider can
also check the number of times he is paying rent to execute the
load and based on further calculations he can decide to own
more facilities such that the frequency of renting will decrease
and he may earn more profit. This can be modelled as a Ski-
Rental problem and further worked out.

The design proposed continues to provide the illusion of
infinite resources in a new way. It considers some factors like
resource requirement, execution time and waiting probability
to formulate the utility function whose values are further used
to decide the strategy. This decision-making is done through
forecasting and game theoretic models which considers past as
well present demand. Our approach during conflict of strategies
involves a method of standard deviation which computes the
final strategy.

This paper provides one method of tackling the problem and
it further opens up interesting avenues for improvement. In
the real environment, certain values like waiting probability
depends on factors like network congestion, efficiency of the
cloud, datacenter locations, etc. So during run-time, the results
obtained may vary with respect to dynamic factors. The utility
function can also be further enhanced to include economic
factors for the cloud provider to get a clearer picture. Since the
avenues are deep and the domain is still growing, updates on
this problem will keep on increasing until an optimal solution
is reached.

REFERENCES

[1] Mell, Peter, and Timothy Grance. “The NIST definition of Cloud
Computing (draft).” NIST special publication 800 (2011): 145.

[2] Armstrong, Django, and Karim Djemame. “Towards Quality of Service in
the Cloud.” In Proc. of the 25th UK Performance Engineering Workshop.
2009.

[3] Endo, Patricia Takako, Andre Vitor de Almeida Palhares, Nadilma Nunes
Pereira, Glauco Estacio Goncalves, Djamel Sadok, Judith Kelner, Bob
Melander, and J. Mangs. “Resource allocation for distributed cloud:
concepts and research challenges.” Network, IEEE 25, no. 4 (2011): 42-
46.

[4] Armbrust, Michael and Fox, Armando and Griffith, Rean and Joseph,
Anthony D. and Katz, Randy H. and Konwinski, Andrew and Lee, Gunho
and Patterson, David A. and Rabkin, Ariel and Stoica, Ion and Zaharia,
Matei. “Above the Clouds: A Berkeley View of Cloud Computing.”
Technical report, no. UCB/EECS-2009-28 (2009).

[5] Vinothina Sr, V. “A Survey on Resource Allocation Strategies in Cloud
Computing.” International Journal (2012).

[6] Goncalves, Paulo, R. O. Y. Shubhabrata, Thomas Begin, and Patrick
Loiseau. “Dynamic Resource Management in Clouds: A Probabilistic
Approach.” IEICE Transactions on Communications 95, no. 8 (2012):
2522-2529.

[7] Han, Zhu, Dusit Niyato, Walid Saad, Tamer Baar, and Are Hjrungnes.
Game theory in wireless and communication networks: theory, models,
and applications. Cambridge University Press, 2011.



[8] Kalekar, Prajakta S. “Time series forecasting using Holt-Winters ex-
ponential smoothing.” Kanwal Rekhi School of Information Technology
(2004).

[9] SAS Products and Solution Documentation, http://support.sas.com/
documentation/cdl/en/etsug/60372/HTML/default/viewer.htm#etsug
forecast sect023.htm (accessed January 15,2013).


