EFFECTIVE PERFORMANCE ANALYSIS AND VISUALIZATION ON EMBEDDED LINUX
Jayaraj P.B, Ranjith Gopalakrishnan¹, Vikas Jain²
Philips Innovation Campus
No. 1, Murphy Road, Ulsoor
Bangalore 560 008
INDIA
Ranjith.Gopalakrishnan@Philips.com, Vikas.Jain@Philips.com

ABSTRACT
This paper¹,² presents a case study of dynamic performance analysis and bottleneck identification of a large application software stack on a Linux-based embedded platform. We use some standard techniques for performance analysis, but we also try out some techniques that are not so common for performance characterization and visualization. The methodology used for measurement collection is generic and hardware-independent (software-centric), and it is relevant for any effort that develops embedded applications on a Linux platform. Using this methodology, we have analyzed the performance of the JUICE (Joint User Interface and Control Engine) software stack developed within Philips, running on a Linux-based embedded platform. We have identified relevant metrics, detailed the tools and methods by which they can be collected (given the existing open-source tool chain) and discussed the salient aspects of performance analysis and visualization of the collected measurements. We conclude that the open-source tool chain provides good support for such measurement collection and can aid further performance analysis efforts. We also discuss the various gaps and issues in the existing tooling that we have come across in this effort.

KEY WORDS
Software Performance Engineering, Software Optimization, Software Performance Analysis, Linux, Embedded Systems

1. Introduction
More and more embedded systems and CE (consumer electronics) devices are being labeled as software-intensive, with the amount of software in these systems reaching several megabytes [1][2]. In [1], the fact that the amount of software in CE devices is growing at an exponential rate (quite similar to moore’s law) is well brought out. It is further explained that the amount and complexity of functionality implemented in software is increasing by leaps and bounds (current high-end TVs hold about 10MB of software). This makes the realization of systems that are responsive to user inputs a considerable challenge. The fact that early performance analysis is critical in general software development was realized in the early 90’s [3]. Nowadays, the scenario in the CE world is no different; the role of timely performance analysis of systems and software is crucial for the realization of responsive and robust CE devices.

Linux is readily establishing itself as one of the most important and versatile operating systems to enter the embedded computing domain. There are several examples of the usage of Linux platforms to realize products in the CE software development community, but much of these efforts don’t yet address the problem of performance analysis in a systematic manner. On the other hand, hard real-time system development has performance management as a significant component [4]. Additionally, performance analysis for embedded systems in the CE (consumer electronics) has been concentrated on the hardware aspects of the platform. Hence, studies were done on low-level aspects of the system like the memory cache, bus bandwidth, bus utilization, etc. In such systems, the application software was simple, and most of the performance problems were caused in the layers below it. But with the growing complexity of software, performance bottlenecks caused by software is gaining prominence. Another traditional way of doing performance analysis involved the manual instrumentation of the code (to gather timing values, etc) and the tabulation and analysis of collected values. This is both time-consuming and error-prone, and hence, one should explore ways in which any code instrumentation can be done (as much as possible) in an automatic fashion.

In this work, we examine aspects of performance analysis of application software stacks running on Linux, and how performance bottlenecks in these can be found out – early and effectively. Also, the objective was to get insights

¹² This work was carried out at Philips Research India, Bangalore. Ranjith Gopalakrishnan is affiliated to NXP Semiconductors (formerly Philips Semiconductors), Bangalore. Vikas Jain is affiliated to Philips Consumer Electronics, Bangalore.
into issues in performance analysis of applications on Linux-based embedded platforms. This effort would also help identify relevant tools and methods by which such analysis can be done, and also gaps in this tooling available. Performance characterization is a description of the qualities and peculiarities of a system related to its performance, mainly its behavior and response under certain conditions. Performance characterization must be as quantitative as possible, so that the system can be compared with other similar systems. Performance analysis is the study of the measurements collected from a characterization exercise, by which performance issues (like bottlenecks) can be identified [5]. The main contribution of this work is the exploration of the ease by which systematic performance analysis can be done on large application software stacks on embedded Linux platforms. The end-objective is to develop a quick and effective methodology for the identification of bottlenecks and for getting better insights into the dynamic execution aspects of large software stacks. Also, we present several metrics for performance characterization, including a metric by which we characterize the real-time nature of components of software stacks. Contributions are also made in the area of performance visualization by enhancement of the available tool chain in this respect.

The rest of this paper is organized as follows. We shall look at other work that is relevant to this study in section 2. In section 3, details are given about the JUICE software stack, on which the performance analysis studies are done. Section 4 outlines the several metrics that were identified for the characterization of application stacks. We shall elucidate on the tools and methods used for the collection of the measurements, in section 5. Some of the performance analysis and visualization results will be presented in section 6. Concluding remarks will be made in section 7.

2. Previous Work

There are some papers that describe an analytical approach to the problem of performance management, in which mathematical models are described wherein the performance of the system can be predicted. In general, the performance of a system can be predicted by symbolic or numerical analysis, or simulation. Among these, analytical solutions are considered to be more faster, and it should be there for be more suitable for a quick evaluation [6]. An architectural approach to performance analysis is also used [7][8]. A similar approach for software architecture evaluation strategy of non-safety critical embedded software is described in [4]. An experimental case study of performance optimization of an embedded multimedia home platform architecture is discussed here. This strategy uses concepts of queuing networks, and is only suitable for advanced evaluation of systems. Such strategies also need practitioners with a good knowledge of queuing network theory, for its implementation.

In [9], a study is described to gather objective data on (Linux-based) application performance on embedded hardware. Various metrics of interest are defined and measured, as per the functionality of embedded device of interest. But this study only measures task-level details like the context-switch time and the process memory usage, and does not provide a source-code level analysis. There are some commercial tools available for instrumentation-based profiling of application code. Rational Quantifier for Linux [10] is a performance profiler that identifies the portions of an application that slow down the execution speed. It offers the performance data in graphical and textual format. Test Quest Pro is another automated test solution for embedded systems with sophisticated human interfaces. The vendors claim that they specialize in automated test solutions for many application and devices in the embedded computing industry. But the disadvantages of such commercial tools are that they are costly, and they are “closed” (their internals cannot be changed as per the user’s needs).

Our paper discusses the dynamic performance evaluation and optimization of embedded software stacks using tools from the open-source community. Tools and techniques that are needed for supporting the dynamic performance measurement, evaluation and optimization, are discussed.

3. Software for case study: the JUICE Software Stack

Figure 1: The main components of the JUICE software stack
We used the JUICE (Joint User Interface and Control Engine) software stack, developed internally in Philips, for our study. JUICE is a UIMS (user interface management system) that has been designed to ease the UI (user interface) and application development for embedded systems. It implements complex UI functionalities like text scrolling, multi-layered menus, etc. Figure 1 shows a simplified architectural view of the JUICE software stack. Notice how the JUICE “talks” (via JAPI) to various applications, which, in turn talk to the middleware subsystem. In other words, JUICE is the agent by which the actual application (CD reader, CD writer, mobile phone middleware, etc) “talks” to the user. Good responsiveness by this stack is essential in providing a good end-user experience. This is a prime motivation for our selection of JUICE for this performance analysis exercise. JUICE contains around 75K lines of codes in the C language, distributed in around 500 C-style functions (250 files).

4. Performance Metrics Identified

Now, we shall discuss the several metrics that we ultimately used for the study. These metrics were converged upon after consultation with the software architects of JUICE. They are:

1. Elapsed time in function call
2. Fan-in and fan-out of the function
3. Elapsed time jitter

The total elapsed time in a function call is the amount of time elapsed between entering the function and exiting from it. This metric is also termed the latency of the function call. This is a sum of time needed to execute lines of source code that are local to the function (termed local elapsed time) and the time to execute other functions called by that particular function. A characterization of the latencies encountered in the stack is very important, as this is a good indication of the responsiveness of the software.

The fan-in of a function is the number of function calls made by other functions to that function, during the execution of the software. On the same note, fan-out of a function refers to the number of function calls that the function makes to other functions (excluding those in the system library, like the read() call provided by libc). In figure 2, functions \(f_1, f_2 \) and \(f_3 \) call function \(f_4 \) two, four and three times respectively. Hence, the fan-in of function \(f_4 \) is \(2+4+3 = 9 \). Likewise, if \(f_4 \) calls \(f_5 \) and \(f_6 \) three and two times separately, the fan-out of \(f_4 \) is \(3+2 = 5 \).

The elapsed time jitter of a function call is a measure of the variability of the elapsed time in a function. This is calculated by finding the standard deviation of the elapsed time. This roughly points to the real-time nature of the function. This is because functions with real-time execution characteristics are expected to have minimal variance for their execution time (which is measured by the elapsed time parameter). Hence, the standard deviation of elapsed time (which is the elapsed time jitter) would be minimal. For example, if a function \(decode_data() \) has elapsed times as 100, 104, 96, 105 milliseconds for similar data input, the elapsed time jitter will be low, which may help us to conclude that the function is (more or less) real-time in nature. But, if the elapsed times vary widely as 100, 67, 134, 75 milliseconds for decoding of similar data, the elapsed time jitter would be high. This would signal the non-real time nature of this function. Thus, a system that uses this function will be relatively non-real-time in nature. We think that the judicious usage of this metric can give a good indication of how deterministic the involved functions are, which may be very useful in the realization of soft real-time multimedia systems.

5. Collection Methodology

All the performance numbers that were collected were with compiler-level instrumentation, and did not involve any manual instrumentation. This ensures that the collection of performance numbers is simple, easy and error-free. We used the extensive instrumentation facilities provided by the GCC compiler. The compiler supports the insertion of instrumentation to collect: a) the call-graph, or a graph representing the sequence of functional calls made in the software stack, b) the latency information related to the function execution. Tools like “gprof” and “function-check” [11] were used to collate and tabulate the collected numbers. Figure 3 shows the overall methodology that we followed in the evaluation of the software. In this figure, the numbered boxes represent the stages where the architects were involved. The additional tooling that we developed was for stage 3.

Use-case of JUICE: The definition of a good and representative use-case is very important while conducting performance measurements. The use-case has to be simple (so that it is easily repeatable) and yet, it
should exercise all the relevant software modules in such a way that leads to the manifestation of the maximum number of bottlenecks. Keeping these criteria in mind, and in consultation with the architects, we identified a relevant use-case as scrolling up 30 times through a set of menus.

Experimental setup used: The target hardware to run the JUICE stack used was the AMD AU 1200 Board [12]. The target runs Linux kernel 2.6.11-rc4 (modified by MontaVista) on a MIPS core, and the measurements were collected on the IDE on-board hard-disk. The cross compiler used was mipsel–linux gcc-3.3.5-glibc-2.3.2.

Using the methodology described above, we were able to collect all the metrics listed in the previous section for every function in the stack.

Gaps identified in open-source tooling:

We shall briefly talk about the gaps or deficiencies we have identified in the tools currently available, during our efforts:

- **Handling of context switches:** Note that the instrumentation collects only the time of entry and exit of the function. There is a chance that in the time in-between, while executing in the body of the function, the operating system switches to execution of other functions (or other processes). The times for these executions would also be added to the latency of the function execution, which is a significant deficiency if the profiled software is heavily multithreaded.

In order to compensate for this deficiency as best as possible, we first make sure that the profiled application is the only one running on the target and the number of external hardware interrupts is as minimal as possible. Also, we run the use-case a number of times, and for each function, we take the average of all the latency times recorded.

- **Overhead of instrumentation:** We measured the overheads (in terms of extra time taken) due to the instrumentation introduced by the GCC compiler. It is about 4.2 microseconds per function call. This overhead is quite small, thought not insignificant. The assumption is that functions of interest have much more latencies of execution above 1-2 milliseconds.

- **Remote logging:** The amount of RAM memory in embedded systems is very limited. Hence, a provision by which one can transfer the collected measurements to a host machine would be very useful. Such transfers should not be too frequent, or the overhead of such transfers can affect the execution of the application.

- **Absolute timing information:** Currently, there is no method by which one can log the absolute times of the entry and exit into functions, and other such events. Such values would make possible integrated performance analysis over measurements from various tools.

![Figure 3: Major steps of the performance analysis methodology used](image)

6. Performance Visualization and Analysis

Performance visualization is important so that one can quickly infer and identify bottlenecks from the huge amount of performance data collected. Performance visualization and analysis is essentially mining the large collection of performance measurements for interesting aspects of performance (like performance hotspots). We developed a tool (which works in tandem with the performance analysis tool cgprof [13]), which generates a colored call-graph, for performance visualization. This call graph indicates the various function calls made during the execution of the software stack. One can indicate to the tool the parameter on which the coloring of the nodes (of each function) is to be based – like the total elapsed time in the function, the fan-in of the function, etc. For example, let us consider that the fan-in of functions is the criteria chosen for the coloring of the call-graph. In this case, functions with a low fan-in will be colored green, those with a moderate fan-in will be colored yellow, functions with a high fan-in will be colored orange, and those with the highest amount of fan-in will be colored
This tool was very helpful in quickly assessing the parts of the architecture or code that could have lead to performance bottlenecks.

A part of the output of this tool when run on JUICE can be seen in figure 4 (coloring is based on fan-in of functions). This call-graph points to the fact that function “SliderCreate” (seen as a red, or darkest, node) is the most used of all functions, as it services the maximum number of function calls.

Analysis of collected measurements: In section 4, the various performance metrics that were used for characterization of the software stack were outlined. Also, we have discussed the use-case that was employed to exercise the stack, during the collection of these measurements. Now, some sample inferences made from the collected data would be presented. This would give a flavor of the performance analysis possible on the collected data.

In figures 5-8, we have shown a few top functions, as per some performance metrics. The values of the metric for these functions are plotted on the y-axis (this is similar for the other graphs). Such plots sometimes point us to the few functions have high values of these metrics, and these are prime candidates for performance optimization.

In figure 5, we have shown the top five functions as per the metric “total elapsed time”. This metric quantifies which part of the code the platform spends most of its time (executing). From this analysis, it has been found that the “draw” routines and the “timer events” routines of JUICE take up much of the CPU time.

Analysis of the fan-in of various functions (see figure 6) found that the set of functions concerned with resource-allocation and platform-interaction are being used heavily. Hence, these are prime candidates for any performance optimization effort.

In Figure 7, we have depicted the top functions as per the metric: local elapsed time per call. Recall that this metric points to the most “heavy” functions. From the results that we have measured, and also in consultation with the software architects, it has been concluded that various “platform” and the “graphics” components seem to dominate here. These are parts that interact with the lower layers (hardware, etc), and hence it points to the fact that either optimization is needed in the hardware, or in the lower levels of the stack.

In Figure 8, the functions having the highest “elapsed time jitter” is shown. From this, we have inferred the (relatively) non real-time behavior of the graphics components and initialization routines. The architects confirmed our inferences and this points to the usefulness of this metric in bringing out non real-time functions.

As stated above, the inferences presented here are just to give a flavor of what can be read from the collection of measurements. But, the full set of measurements was very...
useful to the architects (with a good knowledge of the functionality of each part of the code) to get some good insights into the dynamics of the stack. Also, we were able to generate color-coded call-graphs for various parts of the JUICE software stack (similar to figure 4), which were also useful for further analysis efforts.

There are interesting ways by which our work may be extended. Right now, all the performance metrics are collected at the functional level. It is possible to extend this to the architectural level, taking support from the fact that architectural specifications would give the mapping of functions to an architectural component. This would give effective feedback for improvement of the software architecture. Also, various possibilities may be explored to overcome the deficiencies described in section 5.

References