
Jerrin Shaji George

• Concept

• Linux Power Management

• Android Power Management Design

• Wake Locks

• System Sleep (Suspend)

• Battery Service

• Designed for mobile devices

• Goal is to prolong battery life

• Build on top of Linux Power Management

oNot directly suitable for a mobile device

• Designed for devices which have a 'default-off' behaviour

oThe phone is not supposed to be on when we do not want to use it

oPowered on only when requested to be run, off by default

oUnlike PC, which has a default on behaviour

Two popular power management standards

1. APM (Advanced Power Management)

2. ACPI (Advanced Configuration and Power Interface)

APM

• Control resides in BIOS

• Uses activity timeouts to determine when to power down a device

• BIOS rarely used in embedded systems

• Makes power-management decisions without informing OS or

individual applications

• No knowledge of add-in cards or new devices

APM

• Uses layered approach to

manage devices

• APM-aware applications

(including device drivers)

talk to an OS-specific

APM driver

• The driver communicates

to the APM-aware BIOS,

which controls the

hardware

APM

• Communication occurs in
both directions; power
management events are
sent from the BIOS to the
APM driver, and the APM
driver sends information
and requests to the BIOS
via function calls

• In this way the APM
driver is an intermediary
between the BIOS and
the operating system

APM

• Power management

happens in two ways;

through function calls

from the APM driver to

the BIOS requesting

power state changes, and

automatically based on

device activity

APM

ACPI

• Control divided between BIOS and OS

• Decisions managed through the OS

• Enables sophisticated power policies for general-purpose

computers with standard usage patterns and hardware

• No knowledge of device-specific scenarios (e.g. need to provide

predictable response times or to respond to critical events over

extended period)

ACPI

ACPI specification defines the following four Global ‘Gx’ states and six

Sleep ‘Sx’ states for an ACPI-compliant computer-system:

• G0 (S0)

oWorking

o‘Awaymode’ is a subset of S0, where monitor is off but background

tasks are running

ACPI

• G1, Sleeping, subdivides into the four states S1 through S4:

o S1 : All processor caches are flushed, and the CPU(s) stop executing

instructions. Power to the CPU(s) and RAM is maintained; devices that

do not indicate they must remain on may be powered down

o S2: CPU powered off. Dirty cache is flushed to RAM

o S3(mem): Commonly referred to as Standby, Sleep, or Suspend to RAM.

RAM remains powered

o S4: Hibernation/Suspend-to-Disk - All content of main memory is

saved to non-volatile memory such as a hard drive, and is powered

down

ACPI

• G2 (S5), Soft Off

• G3, Mechanical Off

oThe computer's power has been totally removed via a mechanical

switch

• Legacy State : The state on an operating system which does not

support ACPI. In this state, the hardware and power are not

managed via ACPI, effectively disabling ACPI.

ACPI

• Power mode interface is on sysfs

o /sys/power/state

• sysfs is a virtual file system provided by Linux. sysfs exports

information about devices and drivers from the kernel device

model to user space, and is also used for configuration

• Changing state done by

o # echo mem > /sys/power/state

o # echo disk > /sys/power/state

o # echo standby > /sys/power/state

Overview

• Built as a wrapper to Linux Power Management

• In the Kernel

o Added 'on' state in the power state

o Added Early Suspend framework

o Added Partial Wake Lock mechanism

• Apps and services must request CPU resource with ‘wake locks’

through the Android application framework and native Linux

libraries in order to keep power on, otherwise Android will shut

down the CPU

• Android PM uses wake locks and time out mechanism to switch state

of system power, so that system power consumption decreases

• By default, Android tries to put the system into a sleep or better a

suspend mode as soon as possible

• Applications running in the Dalvik VM can prevent the system from

entering a sleep or suspend state, i.e. applications can assure that

the screen stays on or the CPU stays awake to react quickly to

interrupts

• The means Android provides for this task is wake locks

• If there are no active wake locks, CPU will be turned off

• If there are partial wake locks, screen and keyboard will be turned

off

Types of Wake Locks

• PARTIAL_WAKE_LOCK

o Ensures that the CPU is running

o The screen might not be on

• SCREEN_DIM_WAKE_LOCK

o Wake lock that ensures that the screen is on, but the keyboard backlight

will be allowed to go off, and the screen backlight will be allowed to go

dim

• SCREEN_BRIGHT_WAKE_LOCK

o Wake lock that ensures that the screen is on at full brightness; the

keyboard backlight will be allowed to go off

• FULL_WAKE_LOCK

o Full device ON, including backlight and screen

• Android implements an application framework on top of the

kernel called Android Power Management Applications

Framework

• The Android PM Framework is like a driver. It is written in Java

which connects to Android power driver through JNI

• Currently Android only supports screen, keyboard, buttons

backlight, and the brightness of screen

Through the framework, user space applications can use

‘PowerManger’ class to control the power state of the device

Green - Native

Blue - Java

Red - Kernel

Partial Wake Lock Acquired

All partial wake locks

released

AWAKE

SLEEP
NOTIFI

CATION

Touchscreen or keyboard user activity

event or full wake locks acquired

• When a user application acquire full wake lock or

screen/keyboard touch activity event occur, the machine will

enter ‘AWAKE’ state

• If timeout happens or power key is pressed, the machine will

enters ‘NOTIFICATION’ state

oIf partial wake locks are acquired, it will remain in ‘NOTIFICATION’

oIf all partial locks are released, the machine will go into ‘SLEEP’

• Android PM Framework provides a service for user space

applications through the class PowerManger to achieve power

saving

• The flow of exploring Wake locks are :

oAcquire handle to the PowerManager service by calling

Context.getSystemService()

oCreate a wake lock and specify the power management flags for

screen, timeout, etc.

oAcquire wake lock

oPerform operation such as play MP3

oRelease wake lock

• Used to prevent system from entering suspend or low-power-

state

• Partial Wake Lock behaviour

• Can be acquired/released from Native apps through Power.c

interface

• Can be acquired/released internally from kernel

How are Wake Locks Managed

• Wake Locks are mainly managed in Java layer

• When an android application takes a wake lock, a new instance of

wake lock is registered in the PowerManagerService

o PowerManagerService is running in the java layer

• Registered wake locks are put in a list

How are Wake Locks Managed

• A Single Partial Wake Lock in Kernel is needed to protect multiple

instance of Partial Wake Locks in Java

oIt is taken on behalf of PowerManagerService class with the name

PowerManagerService

• Other wake lock residing in kernel side are either from Native code

via Power.c API or taken internally in the Kernel

oE.g. Partial wake lock for keyboard

• There is one main wake lock called ‘main’ in the kernel to keep the

kernel awake

• It will be the last wake lock to be released when system goes to

suspend

How are Wake Locks Managed

WakeLock in

Java layer

WakeLock

in Kernel

Working

• By default, a time out is set to off the screen

• If FULL_WAKE_LOCK or SCREEN_BRIGHT_WAKE_LOCK has been taken,

when a request comes to the system to go to sleep, the system does

not go to sleep

• If no locks are currently being taken, request is sent through JNI to

suspend the device

Special behaviour of Partial Wake Lock

• PARTIAL_WAKE_LOCK is maintained in the kernel, not in Java

• When a PARTIAL_WAKE_LOCK in Java layer is taken, internally in the

Kernel a PARTIAL_WAKE_LOCK is taken

• All of the PARTIAL_WAKE_LOCK in the Java layer is protected by one

wake lock in the Kernel

• What is it used for ?

o If a PARTIAL_WAKE_LOCK has been take in java, when system tries to go

to sleep, the android will ask the kernel to go to sleep

o But kernel will check if a PARTIAL_WAKE_LOCK has been taken. If so it

will not suspend the CPU

o CPU could run at a reduced frequency/low power mode for running the

background app

Special behaviour of Partial Wake Lock

• EG : Audio playback

oWhen an audio is played, the audio handler, like an ALSA driver, will

take a wake lock in the kernel

o So whenever the device is turned off, we can still hear the audio

because the kernel never fully suspend the audio processing

The flow when a Wake Lock is acquired

• Request sent to PowerManager to acquire a wake lock

• PowerManagerService to take a wake lock

• Add wake lock to the list

• Set the power state

o For a FULL_WAKE_LOCK, PowerState would be set to ON

• For taking Partial wake lock, if it is the first partial wake

lock, a kernel wake lock is taken. This will protect all the

partial wake locks. For subsequent requests, kernel wake

lock is not taken, but just added to the list

The flow when a Wake Lock is acquired

The flow when a Wake Lock is released

• Request to release wake lock sent to PowerManager

• Wake Lock removed from the list

• For PARTIAL_WAKE_LOCK release, if the wake lock to be

released is the last PARTIAL_WAKE_LOCK,

PowerManagerService will also release the wake lock in

the kernel. Will bring kernel to suspend

• setPowerState

o If it is the last wake lock, power state will be set to

mem, which will bring the device to standby

The flow when a Wake Lock is released

• Extension of Linux Power Management Suspend Hooks

• Used by drivers that need to handle power mode settings to the

device before kernel is suspended

• Used to turn off screen and non-wakeup source input devices

• Any driver can register its own early suspend and late_resume

handler using register_early_suspend() API

• Unregistration is done using unregister_early_suspend() API

• When the system is brought to suspend mode, early suspend is

called first. Depending on how the early suspend hook is

implemented, various things can be done

• For e.g. consider a display driver

o In early suspend, the screen can be turned off

o In the suspend, other things like closing the driver can be done

• When system is resumed, resume is called first, followed by

resume late

• API to bring device to sleep when we press the power button

• Require DEVICE_POWER permission

• Can only be called in system process context by verifying uid

and pid

• When power button is presed, an API goToSleep() is called in

the PowerManager

• goToSleep() will force release all wake locks

• When force releasing all locks, power state will be set to off

• In the JNI bridge there is a function setScreenState.

setScreenState is set to off

• Then setPowerState to mem, ie write a mem to

/sys/power/state

• The BatteryService monitors the battery status, level,

temperature etc.

• A Battery Driver in the kernel interacts with the physical

battery via ADC [to read battery voltage] and I²C (Inter-

Integrated Circuit: a multi-master serial single-ended

computer bus used to attach low-speed peripherals to an

electronic device)

• Whenever BatteryService receives information from the

BatteryDriver, it will act accordingly

 E.g. if battery level is low, it will ask system to shutdown

• Using power supply class in Linux Kernel

 /sys/class/power_supply

• Utilize uevent mechanism to update battery status

• uevent : An asynchronous communication channel for kernel

• Battery Service will monitor the battery status based on

received uevent from the kernel

• Android Power Management Hacks, Slow Boot

• Power Management from Linux Kernel to Android, Matt Hsu &

Jim Huang, 0xlab

• Analysis of the Android Architecture. Stefan Brahler

